scholarly journals Mechanisms for European summer temperature response to solar forcing over the last millennium

2012 ◽  
Vol 8 (2) ◽  
pp. 1301-1318
Author(s):  
D. Swingedouw ◽  
L. Terray ◽  
J. Servonnat ◽  
J. Guiot

Abstract. A simulation of the last millennium is compared to a recent spatio-temporal reconstruction of summer temperature over Europe. The focus is on the response to solar forcing over the pre-industrial era. Although the correlation between solar forcing and the reconstruction remains small, the spatial regression over solar forcing shows statistically significant regions. The meridional pattern of this regression is found to be similar in the model and in the reconstruction. This pattern exhibits a large warming over Northern and Mediterranean Europe and a lesser amplitude response over Central Europe. The mechanisms explaining this pattern in the simulation are mainly related to evapotranspiration fluxes. It is shown that the evapotranspiration is larger in summer over Central Europe when solar forcing increases, while it decreases over the Mediterranean area. The explanation for the evapotranspiration increase over Central Europe is found in the increase of winter precipitation there, leading to a soil moisture increase in spring. As a consequence, the evapotranspiration is larger in summer, which leads to an increase in cloud cover over this region, reducing the surface shortwave flux there and leading to less warming. Over the Mediterranean area, the surface shortwave flux increases with solar forcing, the soil becomes dryer and the evapotranspiration is reduced in summer leading to a larger increase in temperature. This effect appears to be overestimated in the model as compared to the reconstruction. Finally, the warming of Northern Europe is related to the albedo feedback due to sea-ice cover retreat with increasing solar forcing. These results show that the last millennium can be useful to evaluate the sensitivity of climate models to radiative forcing changes, using spatio-temporal reconstruction of climate.

2012 ◽  
Vol 8 (5) ◽  
pp. 1487-1495 ◽  
Author(s):  
D. Swingedouw ◽  
L. Terray ◽  
J. Servonnat ◽  
J. Guiot

Abstract. A simulation of the last millennium is compared to a recent spatio-temporal reconstruction of summer temperature over Europe. The focus is on the response to solar forcing over the pre-industrial era. Although the correlation between solar forcing and the reconstruction remains small, the spatial regression over solar forcing shows statistically significant regions. The meridional pattern of this regression is found to be similar in the model and in the reconstruction. This pattern exhibits a large warming over Northern and Mediterranean Europe and a lesser amplitude response over Central and Eastern Europe. The mechanisms explaining this pattern in the simulation are mainly related to evapotranspiration fluxes. It is shown that the evapotranspiration is larger in summer over Central and Eastern Europe when solar forcing increases, while it decreases over the Mediterranean area. The explanation for the evapotranspiration increase over Central and Eastern Europe is found in the increase of winter precipitation there, leading to a soil moisture increase in spring. As a consequence, the evapotranspiration is larger in summer, which leads to an increase in cloud cover over this region, reducing the surface shortwave flux there and leading to less warming. Over the Mediterranean area, the surface shortwave flux increases with solar forcing, the soil becomes dryer and the evapotranspiration is reduced in summer leading to a larger increase in temperature. This effect appears to be overestimated in the model as compared to the reconstruction. Finally, the warming of Northern Europe is related to the albedo feedback due to sea-ice cover retreat with increasing solar forcing.


PLoS ONE ◽  
2015 ◽  
Vol 10 (12) ◽  
pp. e0146024 ◽  
Author(s):  
Annamaria Conte ◽  
Luca Candeloro ◽  
Carla Ippoliti ◽  
Federica Monaco ◽  
Fabrizio De Massis ◽  
...  

2016 ◽  
Vol 16 (15) ◽  
pp. 10083-10095 ◽  
Author(s):  
Nicholas A. Davis ◽  
Dian J. Seidel ◽  
Thomas Birner ◽  
Sean M. Davis ◽  
Simone Tilmes

Abstract. Model simulations of future climates predict a poleward expansion of subtropical arid climates at the edges of Earth's tropical belt, which would have significant environmental and societal impacts. This expansion may be related to the poleward shift of the Hadley cell edges, where subsidence stabilizes the atmosphere and suppresses precipitation. Understanding the primary drivers of tropical expansion is hampered by the myriad forcing agents in most model projections of future climate. While many previous studies have examined the response of idealized models to simplified climate forcings and the response of comprehensive climate models to more complex climate forcings, few have examined how comprehensive climate models respond to simplified climate forcings. To shed light on robust processes associated with tropical expansion, here we examine how the tropical belt width, as measured by the Hadley cell edges, responds to simplified forcings in the Geoengineering Model Intercomparison Project (GeoMIP). The tropical belt expands in response to a quadrupling of atmospheric carbon dioxide concentrations and contracts in response to a reduction in the solar constant, with a range of a factor of 3 in the response among nine models. Models with more surface warming and an overall stronger temperature response to quadrupled carbon dioxide exhibit greater tropical expansion, a robust result in spite of inter-model differences in the mean Hadley cell width, parameterizations, and numerical schemes. Under a scenario where the solar constant is reduced to offset an instantaneous quadrupling of carbon dioxide, the Hadley cells remain at their preindustrial width, despite the residual stratospheric cooling associated with elevated carbon dioxide levels. Quadrupled carbon dioxide produces greater tropical belt expansion in the Southern Hemisphere than in the Northern Hemisphere. This expansion is strongest in austral summer and autumn. Ozone depletion has been argued to cause this pattern of changes in observations and model experiments, but the results here indicate that seasonally and hemispherically asymmetric tropical expansion can be a basic response of the general circulation to climate forcings.


2019 ◽  
Vol 19 (6) ◽  
pp. 3707-3731 ◽  
Author(s):  
Thomas Drugé ◽  
Pierre Nabat ◽  
Marc Mallet ◽  
Samuel Somot

Abstract. Aerosols play an important role in Europe and the Mediterranean area where different sources of natural and anthropogenic particles are present. Among them ammonium and nitrate (A&N) aerosols may have a growing impact on regional climate. In this study, their representation in coarse and fine modes has been introduced in the prognostic aerosol scheme of the ALADIN-Climate regional model. This new aerosol scheme is evaluated over Europe and the Mediterranean Sea, using two twin simulations over the period 1979–2016 with and without A&N aerosols. This evaluation is performed at local and regional scales, using surface stations and satellite measurements. Despite an overestimate of the surface nitrate concentration, the model is able to reproduce its spatial pattern including local maxima (Benelux, Po Valley). Concerning the simulated aerosol optical depth (AOD), the inclusion of A&N aerosols significantly reduces the model bias compared to both AERONET stations and satellite data. Our results indicate that A&N aerosols can contribute up to 40 % of the total AOD550 over Europe, with an average of 0.07 (550 nm) over the period 2001–2016. Sensitivity studies suggest that biases still present are related to uncertainties associated with the annual cycle of A&N aerosol precursors (ammonia and nitric acid). The decrease in sulfate aerosol production over Europe since 1980 produces more free ammonia in the atmosphere leading to an increase in A&N concentrations over the studied period. Analyses of the different aerosol trends have shown for the first time to our knowledge that, since 2005 over Europe, A&N AOD550 and A&N shortwave (SW) direct radiative forcing (DRF) are found to be higher than sulfate and organics, making these the species with the highest AOD and the highest DRF. On average over the period 1979–2016, the A&N DRF is found to be about −1.7 W m−2 at the surface and −1.4 W m−2 at the top of the atmosphere (TOA) in all sky conditions over Europe, with regional maxima located at the surface over the Po Valley (−5 W m−2). Finally, the dimming effect of A&N aerosols is responsible for a cooling of about −0.2∘ C over Europe (summer), with a maximum of −0.4 ∘C over the Po Valley. Concerning precipitation, no significant impact of A&N aerosols has been found.


2020 ◽  
Author(s):  
Nicholas James Leach ◽  
Zebedee Nicholls ◽  
Stuart Jenkins ◽  
Christopher J. Smith ◽  
John Lynch ◽  
...  

Abstract. Here we present a Generalised Impulse Response (GIR) model for use in probabilistic future climate and scenario exploration, integrated assessment, policy analysis and teaching. This model is based on a set of only six equations, which correspond to the standard Impulse Response model used for greenhouse gas metric calculations by the IPCC, plus one physically-motivated additional equation to represent state-dependent feedbacks on the response timescales of each greenhouse gas cycle. These six equations are simple and transparent enough to be easily understood and implemented in other models without reliance on the original source code, but flexible enough to reproduce observed well-mixed greenhouse gas (GHG) concentrations and atmospheric lifetimes, best-estimate effective radiative forcing, and temperature response. We describe the assumptions and methods used in selecting the default parameters, but emphasize that other methods would be equally valid: our focus here is on identifying a minimum level of structural complexity. The tunable nature of the model lends it to use as a fully transparent emulator of complex Earth System Models, such as those participating in CMIP6, while also reproducing the behaviour of other simple climate models. We argue that this GIR model is adequate to reproduce the global temperature response to global emissions and effective radiative forcing, and that it should be used as a lowest-common denominator to provide consistency and continuity between different climate assessments. The model design is such that it can be written in tabular data analysis software, such as Excel, increasing the potential user base considerably.


2019 ◽  
Vol 32 (8) ◽  
pp. 2207-2226 ◽  
Author(s):  
Sungduk Yu ◽  
Michael S. Pritchard

Abstract Ocean circulation responses to interhemispheric radiative imbalance can damp north–south migrations of the intertropical convergence zone (ITCZ) by reducing the burden on atmospheric energy transport. The role of the Atlantic meridional overturning circulation (AMOC) in such dynamics has not received much attention. Here, we present coupled climate modeling results that suggest AMOC responses are of first-order importance to muting ITCZ shift magnitudes as a pair of hemispherically asymmetric solar forcing bands is moved from equatorial to polar latitudes. The cross-equatorial energy transport response to the same amount of interhemispheric forcing becomes systematically more ocean-centric when higher latitudes are perturbed in association with strengthening AMOC responses. In contrast, the responses of the Pacific subtropical cell are not monotonic and cannot predict this variance in the ITCZ’s equilibrium position. Overall, these results highlight the importance of the meridional distribution of interhemispheric radiative imbalance and the rich buffering of internal feedbacks that occurs in dynamic versus thermodynamic (slab) ocean modeling experiments. Mostly, the results imply that the problem of developing a theory of ITCZ migration is entangled with that of understanding the AMOC’s response to hemispherically asymmetric radiative forcing—a difficult topic deserving of focused analysis across more climate models.


2020 ◽  
Author(s):  
Endre Falck Mentzoni ◽  
Andreas Johansen ◽  
Andreas Rostrup Martinsen ◽  
Kristoffer Rypdal ◽  
Martin Rypdal

<blockquote> <div dir="ltr"> <div> <p><span lang="en-US">In this work, we present estimates and uncertainties of the remaining carbon budget for a range of different global temperature targets. To model how atmospheric CO2 and methane concentrations depend on emissions, we use impulse response functions estimated from emission-pulse experiments in Earth System Models (ESMs). We use box-model ESM emulators to model the temperature response to radiative forcing and analyze a range of emission scenarios from Integrated Assessment Models. Taking into account uncertainties in the approximately linear relationship between cumulative emission and peak temperature, as well as internal climate variability and uncertainties in the carbon and climate models, we estimate the remaining carbon budgets for varying targets. The results show that the carbon-budget-uncertainties increase significantly with less ambitious targets.</span></p> </div> </div> </blockquote>


1983 ◽  
Vol 11 (2) ◽  
pp. 152-161
Author(s):  
Jože Pirjevec

Trieste is located at the extreme end of the northern coast of the Adriatic, where the arm of the sea reaches most deeply into the European continent. By its position Trieste is thus a part of Central Europe no less than of the Mediterranean area — if we take into account the fact that the distance between Vienna and Trieste is less than that between Trieste and Rome. On the other hand, Trieste is in an area where the Apennine peninsula meets the Balkan, where for millenia two cultural spheres have been juxtaposed: the Eastern — Greek, Byzantine and Slavic — and the Western — Latin, Romance and German. The complexity of the geographical and cultural circumstances is further increased by the national heterogeneousness of the inhabitants, Italians and Slovenes. Italians predominate in the town, Slovenes in the countryside.


2016 ◽  
Author(s):  
Nicholas Davis ◽  
Dian J. Seidel ◽  
Thomas Birner ◽  
Sean M. Davis ◽  
Simone Tilmes

Abstract. Model simulations of future climates predict a poleward expansion of subtropical arid climates at the edges of earth's tropical belt, which would have significant environmental and societal impacts. This expansion may be related to the poleward shift of the Hadley cell edges, where subsidence stabilizes the atmosphere and suppresses precipitation. Understanding the primary drivers of tropical expansion is hampered by the myriad forcing agents in most model projections of future climate. While many previous studies have examined the response of idealized models to simplified climate forcings and the response of comprehensive climate models to more complex climate forcings, none have examined how comprehensive climate models respond to simplified climate forcings. To shed light on robust processes associated with tropical expansion, here we examine how the tropical belt width, as measured by the Hadley cell edges, responds to simplified forcings in the Geoengineering Model Intercomparison Project (GeoMIP). The tropical belt expands in response to a quadrupling of atmospheric carbon dioxide concentrations and contracts in response to a reduction in the solar constant, with a range of a factor of three in the response among nine models. Models with more surface warming and an overall stronger temperature response to quadrupled carbon dioxide exhibit greater tropical expansion, a robust result in spite of intermodel differences in the mean Hadley cell width, parameterizations, and numerical schemes. Under a scenario where the solar constant is reduced to offset an instantaneous quadrupling of carbon dioxide, the Hadley cells remain at their preindustrial width, despite the residual stratospheric cooling associated with elevated carbon dioxide levels. Quadrupled carbon dioxide produces greater tropical belt expansion in the Southern Hemisphere than in the Northern Hemisphere. This expansion is strongest in austral summer and autumn. Ozone depletion has been argued to cause this pattern of changes in observations and model experiments, but the results here indicate that seasonally- and hemispherically-asymmetric tropical expansion can be a basic response of the general circulation to climate forcings.


Sign in / Sign up

Export Citation Format

Share Document