scholarly journals Tree-ring based June–July mean temperature variations since the Little Ice Age in the Adamello-Presanella Group (Italian Central Alps)

2012 ◽  
Vol 8 (4) ◽  
pp. 3871-3900
Author(s):  
A. Coppola ◽  
G. Leonelli ◽  
M. C. Salvatore ◽  
M. Pelfini ◽  
C. Baroni

Abstract. Mountain climate is generally strongly conditioned by the site-specific topographic characteristics. Detailed reconstructions of climate parameters for pre-instrumental periods in these mountain areas, suffering of glacial retreat caused by recent global warming, are needed in the view of a better comprehension of the environmental dynamics. We present here the first reconstruction of early summer (June–July) mean temperature for the Adamello-Presanella Group (Central European Alps, 45°54'–46°19' N; 10°21'–10°53' E), one of the most glaciarized mountain Group of the Central Italian Alps. The reconstruction has been based on four larch tree-ring width chronologies derived from living trees sampled in four valleys surrounding the Group. The reconstruction spans from 1596 to 2004 and accounts for about 35% of the temperature variance. The statistical verification of the reconstruction demonstrates the positive skill of the tree-ring data set in tracking temperature variability, but a divergence is visible starting from about 1980 between actual and reconstructed temperature, which slightly underestimate instrumental data. An analysis of moving mean sensitivity over a time window of thirty years evidences a decrement of this parameter in recent times, which is likely related to the noticed divergence and indicates a recent more complacent response to climate of larch at the tree-line.

2019 ◽  
Vol 32 (24) ◽  
pp. 8713-8731 ◽  
Author(s):  
Lucie J. Lücke ◽  
Gabriele C. Hegerl ◽  
Andrew P. Schurer ◽  
Rob Wilson

Abstract Quantifying past climate variation and attributing its causes improves our understanding of the natural variability of the climate system. Tree-ring-based proxies have provided skillful and highly resolved reconstructions of temperature and hydroclimate of the last millennium. However, like all proxies, they are subject to uncertainties arising from varying data quality, coverage, and reconstruction methodology. Previous studies have suggested that biological-based memory processes could cause spectral biases in climate reconstructions. This study determines the effects of such biases on reconstructed temperature variability and the resultant implications for detection and attribution studies. We find that introducing persistent memory, reflecting the spectral properties of tree-ring data, can change the variability of pseudoproxy reconstructions compared to the surrogate climate and resolve certain model–proxy discrepancies. This is especially the case for proxies based on ring-width data. Such memory inflates the difference between the Medieval Climate Anomaly and the Little Ice Age and suppresses and extends the cooling in response to volcanic eruptions. When accounting for memory effects, climate model data can reproduce long-term cooling after volcanic eruptions, as seen in proxy reconstructions. Results of detection and attribution studies show that signals in reconstructions as well as residual unforced variability are consistent with those in climate models when the model fingerprints are adjusted to reflect autoregressive memory as found in tree rings.


2014 ◽  
Vol 10 (2) ◽  
pp. 437-449 ◽  
Author(s):  
P. Breitenmoser ◽  
S. Brönnimann ◽  
D. Frank

Abstract. We investigate relationships between climate and tree-ring data on a global scale using the process-based Vaganov–Shashkin Lite (VSL) forward model of tree-ring width formation. The VSL model requires as inputs only latitude, monthly mean temperature, and monthly accumulated precipitation. Hence, this simple, process-based model enables ring-width simulation at any location where monthly climate records exist. In this study, we analyse the growth response of simulated tree rings to monthly climate conditions obtained from the CRU TS3.1 data set back to 1901. Our key aims are (a) to assess the VSL model performance by examining the relations between simulated and observed growth at 2287 globally distributed sites, (b) indentify optimal growth parameters found during the model calibration, and (c) to evaluate the potential of the VSL model as an observation operator for data-assimilation-based reconstructions of climate from tree-ring width. The assessment of the growth-onset threshold temperature of approximately 4–6 °C for most sites and species using a Bayesian estimation approach complements other studies on the lower temperature limits where plant growth may be sustained. Our results suggest that the VSL model skilfully simulates site level tree-ring series in response to climate forcing for a wide range of environmental conditions and species. Spatial aggregation of the tree-ring chronologies to reduce non-climatic noise at the site level yielded notable improvements in the coherence between modelled and actual growth. The resulting distinct and coherent patterns of significant relationships between the aggregated and simulated series further demonstrate the VSL model's ability to skilfully capture the climatic signal contained in tree-ring series. Finally, we propose that the VSL model can be used as an observation operator in data assimilation approaches to reconstruct past climate.


Hydrology ◽  
2019 ◽  
Vol 6 (2) ◽  
pp. 34 ◽  
Author(s):  
Anderson ◽  
Ogle ◽  
Tootle ◽  
Oubeidillah

This study reports the preliminary results from a statistical screening of tree-ring width records from the International Tree-Ring Data Bank (ITRDB), to evaluate the strength of the hydrological signal, in dendrochronological records from the Tennessee Valley. We used United States Geological Survey (USGS) streamflow data from 11 gages, within the Tennessee Valley, and regional tree-ring chronologies, to analyze the dendroclimatic potential of the region, and create seasonal flow reconstructions. Prescreening methods included correlation, date, and temporal stability analysis of predictors to ensure practical and reliable reconstructions. Seasonal correlation analysis revealed that large numbers of regional tree-ring chronologies were significantly correlated (p ≤ 0.05) with the May–June–July streamflow. Stepwise linear regression was used to create the May–June–July streamflow reconstructions. Ten of the 12 streamflow stations were considered statistically skillful (R2 ≥ 0.40). Skillful reconstructions ranged from 208 to 301 years in length, and were statistically validated using leave-one-out cross validation, the sign test, and a comparison of the distribution of low flow years. The long-term streamflow variability was analyzed for the Nolichucky, Nantahala, Emory, and South Fork (SF) Holston stations. The reconstructions revealed that while most of the Western United States (U.S.). was experiencing some of its highest flow years during the early 1900s, the Tennessee Valley region was experiencing a very low flow. Results revealed the potential benefit of using tree-ring chronologies to reconstruct hydrological variables in the Southeastern U.S., by demonstrating the ability of proxy-based reconstructions to provide useful data beyond the instrumental record.


2014 ◽  
Vol 41 (3) ◽  
pp. 265-277 ◽  
Author(s):  
Samuli Helama ◽  
Matti Vartiainen ◽  
Jari Holopainen ◽  
Hanna Mäkelä ◽  
Taneli Kolström ◽  
...  

Abstract X-ray based tree-ring data of maximum latewood densities (MXD) was combined for south-eastern Finland. This data originated from subfossil and modern pine (Pinus sylvestris L.) materials comprising a continuous dendroclimatic record over the past millennium. Calibrating and verifying the MXD chronologies against the instrumental temperature data showed a promising opportunity to reconstruct warm-season (May through September) temperature variability. A new palaeotemperature record correlated statistically significantly with the long instrumental temperature records in the region and adjacent areas since the 1740s. Comparisons with tree-ring based (MXD and tree-ring width) reconstructions from northern Fennoscandia and northern Finland exhibited consistent summer temperature variations through the Medieval Climate Anomaly, Little Ice Age, and the 20th century warmth. A culmination of the LIA cooling during the early 18th century appeared consistently with the Maunder Minimum, when the solar activity was drastically reduced. A number of coolest reconstructed events between AD 1407 and 1902 were coeval to years of crop failure and famine as documented in the agro-historical chronicles. Results indicate an encouraging possibility of warm-season temperature reconstructions using middle/south boreal tree-ring archives to detail and enhance the understanding of past interactions between humans, ecosystems and the earth.


2013 ◽  
Vol 9 (1) ◽  
pp. 211-221 ◽  
Author(s):  
A. Coppola ◽  
G. Leonelli ◽  
M. C. Salvatore ◽  
M. Pelfini ◽  
C. Baroni

Abstract. Climate records from remote mountain sites and for century-long periods are usually lacking for most continents and also for the European Alps. However, detailed reconstructions of climate parameters for pre-instrumental periods in mountain areas, suffering of glacial retreat caused by recent global warming, are needed in the view of a better comprehension of the environmental dynamics. We present here the first annually-resolved reconstruction of summer (JJA) mean temperature for the Adamello–Presanella Group (Central European Alps), one of the most glaciated mountain groups of the Italian Central Alps. The reconstruction has been based on four larch tree-ring width chronologies derived from living trees sampled in four valleys surrounding the Group. The reconstruction spans from 1610 to 2008 and the statistical verification of the reconstruction demonstrates the positive skill of the tree-ring dataset in tracking summer temperature variability also in the recent period.


2013 ◽  
Vol 9 (4) ◽  
pp. 4065-4098 ◽  
Author(s):  
P. Breitenmoser ◽  
S. Brönnimann ◽  
D. Frank

Abstract. We investigate the relationship between climate and tree-ring data on a global scale using the process-based Vaganov–Shashkin–Lite (VSL) forward model of tree-ring width formation. The VSL model requires as inputs only latitude, monthly mean temperature, and monthly accumulated precipitation. Hence, this simple, process-based model enables ring-width simulation at any location where monthly climate records exist. In this study, we analyse the growth response of simulated tree-rings to monthly climate conditions obtained from the CRU TS3.1 data set back to 1901. Our key aims are (a) to examine the relations between simulated and observed growth at 2287 globally distributed sites and (b) to evaluate the potential of the VSL model to reconstruct past climate. The assessment of the growth-onset threshold temperature of approximately 4–6 °C for most sites and species using a Bayesian estimation approach complements other studies on the lower temperature limits where plant growth may be sustained. Our results suggest that the VSL model skilfully simulates site level tree-ring series in response to climate forcing for a wide range of environmental conditions and species. Spatial aggregation of the tree-ring chronologies to reduce non-climatic noise at the site level yields notable improvements in the coherence between modelled and actual growth. The resulting distinct and coherent patterns of significant relationships between the aggregated and simulated series further demonstrate the VSL model's ability to skilfully capture the climatic signal contained in tree-series. Finally, we propose that the VSL model can be used as an observation operator in data assimilation approaches to reconstruct past climate.


Radiocarbon ◽  
2004 ◽  
Vol 46 (3) ◽  
pp. 1161-1187 ◽  
Author(s):  
Konrad A Hughen ◽  
John R Southon ◽  
Chanda J H Bertrand ◽  
Brian Frantz ◽  
Paula Zermeño

This paper describes the methods used to develop the Cariaco Basin PL07-58PC marine radiocarbon calibration data set. Background measurements are provided for the period when Cariaco samples were run, as well as revisions leading to the most recent version of the floating varve chronology. The floating Cariaco chronology has been anchored to an updated and expanded Preboreal pine tree-ring data set, with better estimates of uncertainty in the wiggle-match. Pending any further changes to the dendrochronology, these results represent the final Cariaco 58PC calibration data set.


2017 ◽  
Vol 41 (4) ◽  
pp. 478-495 ◽  
Author(s):  
UK Thapa ◽  
S St. George ◽  
DK Kharal ◽  
NP Gaire

The climate of Nepal has changed rapidly over the recent decades, but most instrumental records of weather and hydrology only extend back to the 1980s. Tree rings can provide a longer perspective on recent environmental changes, and since the early 2000s, a new round of field initiatives by international researchers and Nepali scientists have more than doubled the size of the country’s tree-ring network. In this paper, we present a comprehensive analysis of the current tree-ring width network for Nepal, and use this network to estimate changes in forest growth nation-wide during the last four centuries. Ring-width chronologies in Nepal have been developed from 11 tree species, and half of the records span at least 290 years. The Nepal tree-ring width network provides a robust estimate of annual forest growth over roughly the last four centuries, but prior to this point, our mean ring-width composite fluctuates wildly due to low sample replication. Over the last four centuries, two major events are prominent in the all-Nepal composite: (i) a prolonged and widespread growth suppression during the early 1800s; and (ii) heightened growth during the most recent decade. The early 19th century decline in tree growth coincides with two major Indonesian eruptions, and suggests that short-term disturbances related to climate extremes can exert a lasting influence on the vigor of Nepal’s forests. Growth increases since AD 2000 are mainly apparent in high-elevation fir, which may be a consequence of the observed trend towards warmer temperatures, particularly during winter. This synthesis effort should be useful to establish baselines for tree-ring data in Nepal and provide a broader context to evaluate the sensitivity or behavior of this proxy in the central Himalayas.


2021 ◽  
Author(s):  
Jonathan Barichivich ◽  
Philippe Peylin ◽  
Valérie Daux ◽  
Camille Risi ◽  
Jina Jeong ◽  
...  

<p>Gradual anthropogenic warming and parallel changes in the major global biogeochemical cycles are slowly pushing forest ecosystems into novel growing conditions, with uncertain consequences for ecosystem dynamics and climate. Short-term forest responses (i.e., years to a decade) to global change factors are relatively well understood and skilfully simulated by land surface models (LSMs). However, confidence on model projections weaken towards longer time scales and to the future, mainly because the long-term responses (i.e., decade to century) of these models remain unconstrained. This issue limits confidence on climate model projections. Annually-resolved tree-ring records, extending back to pre-industrial conditions, have the potential to constrain model responses at interannual to centennial time scales. Here, we constrain the representation of tree growth and physiology in the ORCHIDEE global land surface model using the simulated interannual variability of tree-ring width and carbon (Δ<sup>13</sup>C) and oxygen (δ<sup>18</sup>O) stable isotopes in six sites in boreal and temperate Europe.  The model simulates Δ<sup>13</sup>C (r = 0.31-0.80) and δ<sup>18</sup>O (r = 0.36-0.74) variability better than tree-ring width variability (r < 0.55), with an overall skill similar to that of other state-of-the-art models such as MAIDENiso and LPX-Bern. These results show that growth variability is not well represented, and that the parameterization of leaf-level physiological responses to drought stress in the temperate region can be improved with tree-ring data. The representation of carbon storage and remobilization dynamics is critical to improve the realism of simulated growth variability, temporal carrying over and recovery of forest ecosystems after climate extremes. The simulated physiological response to rising CO2 over the 20th century is consistent with tree-ring data in the temperate region, despite an overestimation of seasonal drought stress and stomatal control on photosynthesis. Photosynthesis correlates directly with isotopic variability, but correlations with δ<sup>18</sup>O combine physiological effects and climate variability impacts on source water signatures. The integration of tree-ring data (i.e. the triple constraint: width, Δ<sup>13</sup>C and δ<sup>18</sup>O) and land surface models as demonstrated here should contribute towards reducing current uncertainties in forest carbon and water cycling.</p>


2016 ◽  
Vol 12 (7) ◽  
pp. 1485-1498 ◽  
Author(s):  
Liangjun Zhu ◽  
Yuandong Zhang ◽  
Zongshan Li ◽  
Binde Guo ◽  
Xiaochun Wang

Abstract. We present a reconstruction of July–August mean maximum temperature variability based on a chronology of tree-ring widths over the period AD 1646–2013 in the northern part of the northwestern Sichuan Plateau (NWSP), China. A regression model explains 37.1 % of the variance of July–August mean maximum temperature during the calibration period from 1954 to 2012. Compared with nearby temperature reconstructions and gridded land surface temperature data, our temperature reconstruction had high spatial representativeness. Seven major cold periods were identified (1708–1711, 1765–1769, 1818–1821, 1824–1828, 1832–1836, 1839–1842, and 1869–1877), and three major warm periods occurred in 1655–1668, 1719–1730, and 1858–1859 from this reconstruction. The typical Little Ice Age climate can also be well represented in our reconstruction and clearly ended with climatic amelioration at the late of the 19th century. The 17th and 19th centuries were cold with more extreme cold years, while the 18th and 20th centuries were warm with less extreme cold years. Moreover, the 20th century rapid warming was not obvious in the NWSP mean maximum temperature reconstruction, which implied that mean maximum temperature might play an important and different role in global change as unique temperature indicators. Multi-taper method (MTM) spectral analysis revealed significant periodicities of 170-, 49–114-, 25–32-, 5.7-, 4.6–4.7-, 3.0–3.1-, 2.5-, and 2.1–2.3-year quasi-cycles at a 95 % confidence level in our reconstruction. Overall, the mean maximum temperature variability in the NWSP may be associated with global land–sea atmospheric circulation (e.g., ENSO, PDO, or AMO) as well as solar and volcanic forcing.


Sign in / Sign up

Export Citation Format

Share Document