scholarly journals Sustainability characteristics of drinking water supply

2020 ◽  
Author(s):  
Jolijn van Engelenburg ◽  
Erik van Slobbe ◽  
Adriaan J. Teuling ◽  
Remko Uijlenhoet ◽  
Petra Hellegers

Abstract. Developments such as climate change and growing demand for drinking water threaten the sustainability of drinking water supply worldwide. To deal with this threat, adaptation of drinking water supply systems is imperative, not only on a global and national scale, but particularly on a local scale. This investigation sought to establish characteristics that describe the sustainability of local drinking water supply. We use an integrated systems approach, describing the local drinking water supply system in terms of hydrological, technical and socio-economic characteristics that determine the sustainability of a local drinking water supply system. Three cases on drinking water supply in the Netherlands are analysed. One case relates to a short-term development, that is the 2018 summer drought, and two concern long-term phenomena, that is, changes in water quality and growth in drinking water demand. The approach taken recognises that next to extreme weather events, socio-economic developments will be among the main drivers of changes in drinking water supply. Effects of pressures associated with, for example, population growth, industrial developments and land use changes, could result in limited water resource availability, deteriorated groundwater quality and growing water demand. To gain a perspective on the case study findings broader than the Dutch context, the sustainability issues identified were paired with global issues concerning sustainable drinking water supply. This resulted in a proposed set of generally applicable sustainability characteristics, each divided into five criteria describing the hydrological, technical and socio-economic sustainability of a local drinking water supply system. Elaboration of these sustainability characteristics and criteria into a sustainability assessment can provide information on the challenges and trade-offs inherent in the sustainable development and management of a local drinking water supply system.

2020 ◽  
Vol 2 (1) ◽  
pp. 53 ◽  
Author(s):  
Stavroula Tsitsifli ◽  
Vasilis Kanakoudis

A drinking water supply system is an extraordinarily complex system—consisting of kilometers of pipes and various tanks, valves, pumps, and other equipment. This complexity makes it extremely vulnerable to physical, chemical, and/or biological hazards. Therefore, the vulnerability assessment of a drinking water supply system to identify the critical control points is absolutely necessary. This paper assesses the vulnerability of the drinking water supply systems. The assessment is elaborated in systems using water from surface water bodies and groundwater bodies. The critical control points are identified using a risk assessment methodology (identifying the probability of the hazard occurrence and its effect or severity) where the monitoring parameters, and the corrective actions are determined.


2020 ◽  
Author(s):  
Alessio Pugliese ◽  
Mattia Neri ◽  
Armando Brath ◽  
Elena Toth

<p>Complex water optimisation problems represent one of the biggest challenges of the near future due to human and climate impacts. On the one hand, stakeholders in the water supply sector require high-level knowledge of the whole water cycle process at different scales, with the aim to either assess the risk for uncertain future water availability or rely on more analytic approaches for decision making. On the other hand, scientific research produces high quality models, algorithms and schemes capable of solving the water problems, but scientists often struggle when it comes to deploy tools that deliver their research outcomes to stakeholders and decision makers that ultimately will use them. The principal goal of this project is to fill the gap between the development of innovative research methodologies and their practical usability in the real world. We present “RApp”, a web-based application written purely in R within the Shiny framework and developed in collaboration with the water supply company Romagna Acque SpA. RApp simulates and visualizes the behavior of the reservoir that sustains the drinking water supply system of the Romagna region, Italy, in order to support its optimal management. Reservoir simulations are obtained connecting, through a unique and site-specific modelling chain, the inflows from the upstream catchments, the functioning of the reservoir, the potential of the treatment plant and the water demand. The optimized monthly-based management rules were obtained off-line, through a multi-objective optimization algorithm by maximizing the water yields and, at the same time, minimizing the occurrence of water outages during drought periods. The RApp user can produce quick reports of the past and expected reservoir yields and stored volumes, in terms of either graphical or table outputs, as a function of different initial and boundary conditions provided by the users, such as the initial stored volume, the expected inflows, the adoption of optimized or user-defined management rules, the occurrence of an abrupt change in the water demand, thus, allowing stakeholders to explore the impact of different scenarios and management options. For developing the tool, a very close interaction between the research group and the stakeholders was required, and is still ongoing, in order to define and then expand the functionalities of the software that are most needed for its practical use.</p>


Author(s):  

Groundwater of prospecting/operative boreholes located at the South-West suburb of Ekaterinburg and requiring a preliminary treatment to meet requirements of СанПиН 2.1.4.1074-01 state sanitary standard is a subject of inquiry. Optimal parameters (ozone doze, time of water contact with air/ozone mixture, water filtration rate, and ozone residual concentration) of the water de-ferrization, de-manganezation, and disinfection according the “oxidization-filtration” scheme have been experimentally set at a laboratory plant. These parameters will enable to secure the desired groundwater quality for its use in the autonomous drinking water supply system. A technique and a plant for groundwater treatment with 5 m3/hour for an autonomous drinking water supply system has been developed.


TRIKONOMIKA ◽  
2018 ◽  
Vol 17 (2) ◽  
pp. 59
Author(s):  
Wasifah Hanim

This study aims to analyze the system of drinking water management in the decentralization era and to to analyze of the difference of community accessibility to drinking water between before and after the era of decentralization. The analytical method used is descriptive method, which is analyzing the implementation of drinking water supply systems (DWSS) in the decentralization era and average difference test to determine the development of community accessibility to drinking water before and after decentralization era. The result shows that decentralization provides a positive development towards the implementation of the drinking water supply system, namely by increasing the number of districts/cities that have DWSS planning documents but statistically the decentralization era did not increase the growth of drinking water coverage.


2021 ◽  
Vol 14 (1) ◽  
pp. 1-43
Author(s):  
Jolijn van Engelenburg ◽  
Erik van Slobbe ◽  
Adriaan J. Teuling ◽  
Remko Uijlenhoet ◽  
Petra Hellegers

Abstract. Developments such as climate change and a growing demand for drinking water threaten the sustainability of drinking water supply worldwide. To deal with this threat, adaptation of drinking water supply systems is imperative, not only on a global and national scale but particularly on a local scale. This investigation sought to establish characteristics that describe the sustainability of local drinking water supply. The hypothesis of this research was that sustainability characteristics depend on the context that is analysed, and therefore, a variety of cases must be analysed to reach a better understanding of the sustainability of drinking water supply in the Netherlands. Therefore, three divergent cases on drinking water supply in the Netherlands were analysed. One case related to a short-term development (2018 summer drought), and two concerned long-term phenomena (changes in water quality and growth in drinking water demand). We used an integrated systems approach, describing the local drinking water supply system in terms of hydrological, technical, and socio-economic characteristics that determine the sustainability of a local drinking water supply system. To gain a perspective on the case study findings that are broader than the Dutch context, the sustainability aspects identified were paired with global aspects concerning sustainable drinking water supply. This resulted in the following set of hydrological, technical, and socio-economic sustainability characteristics: (1) water quality, water resource availability, and impact of drinking water abstraction; (2) reliability and resilience of the technical system and energy use and environmental impact; (3) drinking water availability, water governance, and land and water use. Elaboration of these sustainability characteristics and criteria into a sustainability assessment can provide information on the challenges and trade-offs inherent in the sustainable development and management of a local drinking water supply system.


2020 ◽  
Vol 19 (10) ◽  
pp. 1813-1822
Author(s):  
Cecilia Caretti ◽  
Roberta Muoio ◽  
Leonardo Rossi ◽  
Daniela Santianni ◽  
Claudio Lubello ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document