Radar-based rainfall nowcasting for flash flood hazard assessment: recent results at regional and Continental scales

Author(s):  
Marc Berenguer ◽  
Shinju Park ◽  
Daniel Sempere-Torres

<p>Radar rainfall estimates and nowcasts have been used in Catalonia (NE Spain) for real-time flash flood hazard nowcasting based on the basin-aggregated rainfall for several years. This approach has been further developed within the European Projects ERICHA (www.ericha.eu) and ANYWHERE (www.anywhere-h2020.eu), where it has been demonstrated to monitor flash floods in real time in several locations and at different spatial scales (from regional to Continental coverage).</p><p>The work summarizes the main results of the recent projects, analysing the performance of the flash flood nowcasting system. The results obtained on recent events  show the main advantages and some of the limitations of the system.</p>

2021 ◽  
Author(s):  
Mohamed Abd-el-Kader ◽  
Ahmed Elfeky ◽  
Mohamed Saber ◽  
Maged AlHarbi ◽  
abed Alataway

Abstract Flash floods are highly devastating, however there is no effective management for their water in Saudi Arabia, therefore, it is crucial to adopt Rainfall Water Harvesting (RWH) techniques to mitigate the flash floods and manage the available water resources from the infrequent and rare rainfall storms. The goal of this study is to create a potential flood hazard map and a map of suitable locations for RWH in Wadi Nisah, Saudi Arabia for future water management and flood prevention plans and to identify potential areas for rainwater harvesting and dam construction for both a flood mitigation and water harvesting. This research was carried out using a spatiotemporal distributed model based on multi-criteria decision analysis by combining Geographic Information System (GIS), Remote Sensing (RS), and Multi-Criteria Decision-Making tools (MCDM). The flood hazard mapping criteria were elevation, drainage density, slope, direct runoff depth at 50 years return period, Topographic witness index, and Curve Number, according to the Multi-criteria decision analysis, while the criteria for RWH were Slope, Land cover, Stream order, Lineaments density, and Average of annual max-24hr Rainfall. The weight of each criteria was estimated based on Analytical Hierarchy Process (AHP). In multi-criteria decision analysis, 21.55 % of the total area for Wadi Nisah was classified as extremely dangerous and dangerous; 65.29 % of the total area was classified as moderate; and 13.15 % of the total area was classified as safe and very safe in flash flood hazard classes. Only 15% of Wadi Nisah has a very high potentiality for RWH and 27.7%, 57.31% of the basin has a moderate and a low or extremely low potentiality of RWH, respectively. According to the developed RWH potentiality map, two possible dam sites were proposed. The maximum height of the proposed dams, which corresponded to the cross section of dam locations, ranged from 6.2 to 9 meters; the maximum width of dams ranged from 573.48 to 725 meters; the maximum storage capacity of reservoirs, which corresponded to the distribution of topographic conditions in the surrounding area, ranged from 3976104.499 m3 to 4328509.123 m3; and the maximum surface area of reservoirs ranged from 1268372.625 m2 to 1505825.676.14 m2. These results are highly important for the decision makers for not only flash flood mitigation but also water management in the study area.


2006 ◽  
Vol 7 (4) ◽  
pp. 660-677 ◽  
Author(s):  
Enrique R. Vivoni ◽  
Dara Entekhabi ◽  
Rafael L. Bras ◽  
Valeriy Y. Ivanov ◽  
Matthew P. Van Horne ◽  
...  

Abstract The predictability of hydrometeorological flood events is investigated through the combined use of radar nowcasting and distributed hydrologic modeling. Nowcasting of radar-derived rainfall fields can extend the lead time for issuing flood and flash flood forecasts based on a physically based hydrologic model that explicitly accounts for spatial variations in topography, surface characteristics, and meteorological forcing. Through comparisons to discharge observations at multiple gauges (at the basin outlet and interior points), flood predictability is assessed as a function of forecast lead time, catchment scale, and rainfall spatial variability in a simulated real-time operation. The forecast experiments are carried out at temporal and spatial scales relevant for operational hydrologic forecasting. Two modes for temporal coupling of the radar nowcasting and distributed hydrologic models (interpolation and extended-lead forecasting) are proposed and evaluated for flood events within a set of nested basins in Oklahoma. Comparisons of the radar-based forecasts to persistence show the advantages of utilizing radar nowcasting for predicting near-future rainfall during flood event evolution.


2013 ◽  
Vol 28 (6) ◽  
pp. 1478-1497 ◽  
Author(s):  
Luciana K. Cunha ◽  
James A. Smith ◽  
Mary Lynn Baeck ◽  
Witold F. Krajewski

Abstract Dual-polarization radars are expected to provide better rainfall estimates than single-polarization radars because of their ability to characterize hydrometeor type. The goal of this study is to evaluate single- and dual-polarization radar rainfall fields based on two overlapping radars (Kansas City, Missouri, and Topeka, Kansas) and a dense rain gauge network in Kansas City. The study area is located at different distances from the two radars (23–72 km for Kansas City and 104–157 km for Topeka), allowing for the investigation of radar range effects. The temporal and spatial scales of radar rainfall uncertainty based on three significant rainfall events are also examined. It is concluded that the improvements in rainfall estimation achieved by polarimetric radars are not consistent for all events or radars. The nature of the improvement depends fundamentally on range-dependent sampling of the vertical structure of the storms and hydrometeor types. While polarimetric algorithms reduce range effects, they are not able to completely resolve issues associated with range-dependent sampling. Radar rainfall error is demonstrated to decrease as temporal and spatial scales increase. However, errors in the estimation of total storm accumulations based on polarimetric radars remain significant (up to 25%) for scales of approximately 650 km2.


2014 ◽  
Vol 75 (3) ◽  
pp. 2905-2929 ◽  
Author(s):  
Johnny Douvinet ◽  
Marco J. Van De Wiel ◽  
Daniel Delahaye ◽  
Etienne Cossart

2007 ◽  
Vol 40 (4) ◽  
pp. 1621
Author(s):  
E. Sambaziotis ◽  
I. Fountoulis

In this paper it is an effort to combine different methodologies in order to locate the sensitive sites in flash flood phenomena in a relatively small catchment located north of Kalamata (Messinia SW Péloponnèse, Greece). Based on digitised topographic map (scale 1/5.000) the longitudinal, gradient and stream power profiles of the watercourses were constructed and the results (possibly sensitive to flash floods sites) were compared to ones that came from applying hydrological simulation, hydrographs as well as Instantaneous Unitary Hydrographs. The comparison showed that the results were in good agreement.


2018 ◽  
Vol 19 (9) ◽  
pp. 1507-1528 ◽  
Author(s):  
Elise Monsieurs ◽  
Dalia Bach Kirschbaum ◽  
Jackson Tan ◽  
Jean-Claude Maki Mateso ◽  
Liesbet Jacobs ◽  
...  

Abstract Accurate precipitation data are fundamental for understanding and mitigating the disastrous effects of many natural hazards in mountainous areas. Floods and landslides, in particular, are potentially deadly events that can be mitigated with advanced warning, but accurate forecasts require timely estimation of precipitation, which is problematic in regions such as tropical Africa with limited gauge measurements. Satellite rainfall estimates (SREs) are of great value in such areas, but rigorous validation is required to identify the uncertainties linked to SREs for hazard applications. This paper presents results of an unprecedented record of gauge data in the western branch of the East African Rift, with temporal resolutions ranging from 30 min to 24 h and records from 1998 to 2018. These data were used to validate the Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) research version and near-real-time products for 3-hourly, daily, and monthly rainfall accumulations, over multiple spatial scales. Results indicate that there are at least two factors that led to the underestimation of TMPA at the regional level: complex topography and high rainfall intensities. The TMPA near-real-time product shows overall stronger rainfall underestimations but lower absolute errors and a better performance at higher rainfall intensities compared to the research version. We found area-averaged TMPA rainfall estimates relatively more suitable in order to move toward regional hazard assessment, compared to data from scarcely distributed gauges with limited representativeness in the context of high rainfall variability.


2018 ◽  
Author(s):  
William Amponsah ◽  
Pierre-Alain Ayral ◽  
Brice Boudevillain ◽  
Christophe Bouvier ◽  
Isabelle Braud ◽  
...  

Abstract. This paper describes an integrated, high-resolution dataset of hydro-meteorological variables (rainfall and discharge) concerning a number of high-intensity flash floods that occurred in Europe and in the Mediterranean region from 1991 to 2015. This type of dataset is rare in the scientific literature because flash floods are typically poorly observed hydrological extremes. Valuable features of the dataset (hereinafter referred to as EuroMedeFF database) include i) its coverage of varied hydro-climatic regions, ranging from Continental Europe through the Mediterranean to Arid climates, ii) the high space-time resolution radar-rainfall estimates, and iii) the dense spatial sampling of the flood response, by observed hydrographs and/or flood peak estimates from post-flood surveys. Flash floods included in the database are selected based on the limited upstream catchment areas (up to 3000 km2), the limited storm durations (up to 2 days), and the unit peak flood magnitude. The EuroMedeFF database comprises 49 events that occurred in France, Israel, Italy, Romania, Germany, and Slovenia, and constitutes a sample of rainfall and flood discharge extremes in different climates. The dataset may be of help to hydrologists as well as other scientific communities because it offers benchmark data for the identification and analysis of the hydro-meteorological causative processes, evaluation of flash flood hydrological models and for hydro-meteorological forecast systems. The dataset also provides a template for the analysis of the space-time variability of flash flood-triggered rainfall fields and of the effects of their estimation on the flood response modelling. The dataset is made available to the public as a "public dataset" with the following DOI: (https://doi.org/10.6096/mistrals-hymex.1493).


Sign in / Sign up

Export Citation Format

Share Document