Inter-comparison of four operational satellite Fire Radiative Power (FRP) products: A spatial and temporal consistency assessment.

Author(s):  
Bernardo Mota ◽  
Nadine Gobron ◽  
Martin Wooster

<p> We inter-compare four remotely sensed Fire Radiative Power (FRP) products, the polar-orbiter products derived from active fires detected using the <span>Moderate Resolution Imaging Spectroradiometer data </span>(MCD14ML) and VIIRS (VNP14ML and VNP14IMGML), and geostationary products derived from data collected by Meteosat’s <span>Spinning Enhanced Visible and Infrared Imager (the LSA-SAF FRP-PIXEL product). We focus on seven years of data (January 2012 to December 2018), and </span>using the ability of the geostationary product to capture the daily fire cycle we quantify for each polar-orbiter FRP product the proportion of daily fire energy release that they capture and that which they miss, and also identify the areas where their overpass times successfully capture the diurnal fire activity peak, and where they do not. In addition, by analysing <span>frequency density (f-D) distributions of FRP at a 0.5° grid cell resolution we evaluate </span>each products minimum FRP detection limit, which typically precludes detection of a proportion of the highly numerous but individually relatively small and/or low intensity fires.<span> R</span><span>esults are summarized by biome type based on the ESA CCI Land Cover product. </span>Our inter-comparison allows for the identification and quantification of some of the key non-fire effects causing FRP underestimation in satellite FRP products: pixel size, pixel area growth off-nadir, and the low temporal resolution of polar-orbiting sensors. Our results and the methodology developed herein should serve to evaluate and cross-calibrate FRP estimates obtained by the future Copernicus Climate Change Services (C3S) FRP products, which initially at least will be based only on SLSTR data collected by the Sentinel-3 satellite.</p>

2021 ◽  
Vol 13 (9) ◽  
pp. 1627
Author(s):  
Chermelle B. Engel ◽  
Simon D. Jones ◽  
Karin J. Reinke

This paper introduces an enhanced version of the Biogeographical Region and Individual Geostationary HHMMSS Threshold (BRIGHT) algorithm. The algorithm runs in real-time and operates over 24 h to include both daytime and night-time detections. The algorithm was executed and tested on 12 months of Himawari-8 data from 1 April 2019 to 31 March 2020, for every valid 10-min observation. The resulting hotspots were compared to those from the Visible Infrared Imaging Radiometer Suite (VIIRS) and the Moderate Resolution Imaging Spectroradiometer (MODIS). The modified BRIGHT hotspots matched with fire detections in VIIRS 96% and MODIS 95% of the time. The number of VIIRS and MODIS hotspots with matches in the coincident modified BRIGHT dataset was lower (at 33% and 46%, respectively). This paper demonstrates a clear link between the number of VIIRS and MODIS hotspots with matches and the minimum fire radiative power considered.


2011 ◽  
Vol 11 (2) ◽  
pp. 5351-5378 ◽  
Author(s):  
A. K. Mebust ◽  
A. R. Russell ◽  
R. C. Hudman ◽  
L. C. Valin ◽  
R. C. Cohen

Abstract. We use observations of fire radiative power (FRP) from the Moderate Resolution Imaging Spectroradiometer (MODIS) and tropospheric NO2 column measurements from the Ozone Monitoring Instrument (OMI) to derive NO2 wildfire emission coefficients (g MJ−1) for three land types over California and Nevada. Retrieved emission coefficients were 0.279 ± 0.077, 0.342 ± 0.053, and 0.696 ± 0.088 g MJ−1 NO2 for forest, grass and shrub fuels, respectively. These emission coefficients reproduce ratios of emissions with fuel type reported previously using independent methods. However, the magnitude of these coefficients is lower than prior estimates, which suggests either a negative bias in the OMI NO2 retrieval over regions of active emissions, or that the average fire observed in our study has a smaller ratio of flaming to smoldering combustion than measurements used in prior estimates of emissions. Our results indicate that satellite data can provide an extensive characterization of the variability in fire NOx emissions; 67% of the variability in emissions in this region can be accounted for using an FRP-based parameterization.


2006 ◽  
Vol 21 (4) ◽  
pp. 649-655 ◽  
Author(s):  
Thomas F. Lee ◽  
Steven D. Miller ◽  
Carl Schueler ◽  
Shawn Miller

Abstract The Visible/Infrared Imager Radiometer Suite (VIIRS), scheduled to fly on the satellites of the National Polar-orbiting Operational Environmental Satellite System, will combine the missions of the Advanced Very High Resolution Radiometer (AVHRR), which flies on current National Oceanic and Atmospheric Administration satellites, and the Operational Linescan System aboard the Defense Meteorological Satellite Program satellites. VIIRS will offer a number of improvements to weather forecasters. First, because of a sophisticated downlink and relay system, VIIRS latencies will be 30 min or less around the globe, improving the timeliness and therefore the operational usefulness of the images. Second, with 22 channels, VIIRS will offer many more products than its predecessors. As an example, a true-color simulation is shown using data from the Earth Observing System’s Moderate Resolution Imaging Spectroradiometer (MODIS), an application current geostationary imagers cannot produce because of a missing “green” wavelength channel. Third, VIIRS images will have improved quality. Through a unique pixel aggregation strategy, VIIRS pixels will not expand rapidly toward the edge of a scan like those of MODIS or AVHRR. Data will retain nearly the same resolution at the edge of the swath as at nadir. Graphs and image simulations depict the improvement in output image quality. Last, the NexSat Web site, which provides near-real-time simulations of VIIRS products, is introduced.


2013 ◽  
Vol 6 (2) ◽  
pp. 3215-3247 ◽  
Author(s):  
J. F. Meirink ◽  
R. A. Roebeling ◽  
P. Stammes

Abstract. Accurate calibration of satellite imagers is a prerequisite for using their measurements in climate applications. Here we present a method for the inter-calibration of geostationary and polar-orbiting imager solar channels based on regressions of collocated near-nadir radiances. Specific attention is paid to correcting for differences in spectral response between instruments. The method is used to calibrate the solar channels of the Spinning Enhanced Visible and Infrared Imager (SEVIRI) on the geostationary Meteosat satellite with corresponding channels of the Moderate Resolution Imaging Spectroradiometer (MODIS) on the polar-orbiting Aqua satellite. The SEVIRI operational calibration is found to be stable during the years 2004 to 2009 but off by −8, −6, and +3.5% for channels 1 (0.6 μm), 2 (0.8 μm), and 3 (1.6 μm), respectively. These results are robust for a range of choices that can be made regarding data collocation and selection, as long as the viewing and illumination geometries of the two instruments are matched. Uncertainties in the inter-calibration method are estimated to be 1% for channel 1 and 1.5% for channels 2 and 3. A specific application of the method is the inter-calibration of polar imagers using SEVIRI as a transfer instrument. This offers an alternative to direct inter-calibration, which in general has to rely on high-latitude collocations. Using this method we have tied MODIS-Terra and Advanced Very High Resolution Radiometer (AVHRR) instruments on National Oceanic and Atmospheric Administration (NOAA) satellites 17 and 18 to MODIS-Aqua for the years 2007 to 2009. While reflectances of the two MODIS instruments differ less than 2% for all channels considered, deviations of an existing AVHRR calibration from MODIS-Aqua reach −3.5 and +2.5% for the 0.8 and 1.6 μm channels, respectively.


2009 ◽  
Vol 26 (7) ◽  
pp. 1388-1397 ◽  
Author(s):  
Keith D. Hutchison ◽  
Robert L. Mahoney ◽  
Eric F. Vermote ◽  
Thomas J. Kopp ◽  
John M. Jackson ◽  
...  

Abstract A geometry-based approach is presented to identify cloud shadows using an automated cloud classification algorithm developed for the National Polar-orbiting Operational Environmental Satellite System (NPOESS) program. These new procedures exploit both the cloud confidence and cloud phase intermediate products generated by the Visible/Infrared Imager/Radiometer Suite (VIIRS) cloud mask (VCM) algorithm. The procedures have been tested and found to accurately detect cloud shadows in global datasets collected by NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS) sensor and are applied over both land and ocean background conditions. These new procedures represent a marked departure from those used in the heritage MODIS cloud mask algorithm, which utilizes spectral signatures in an attempt to identify cloud shadows. However, they more closely follow those developed to identify cloud shadows in the MODIS Surface Reflectance (MOD09) data product. Significant differences were necessary in the implementation of the MOD09 procedures to meet NPOESS latency requirements in the VCM algorithm. In this paper, the geometry-based approach used to predict cloud shadows is presented, differences are highlighted between the heritage MOD09 algorithm and new VIIRS cloud shadow algorithm, and results are shown for both these algorithms plus cloud shadows generated by the spectral-based approach. The comparisons show that the geometry-based procedures produce cloud shadows far superior to those predicted with the spectral procedures. In addition, the new VCM procedures predict cloud shadows that agree well with those found in the MOD09 product while significantly reducing the execution time as required to meet the operational time constraints of the NPOESS system.


2013 ◽  
Vol 6 (3) ◽  
pp. 5577-5619 ◽  
Author(s):  
A. R. Naeger ◽  
S. A. Christopher

Abstract. In this paper, we develop an algorithm based on combining spectral, spatial, and temporal thresholds from the geostationary Spinning Enhanced Visible and InfraRed Imager (SEVIRI) daytime measurements to identify and track different aerosol types, primarily volcanic ash. Contemporary methods typically do not use temporal information to identify ash. We focus not only on the identification and tracking of volcanic ash during the Eyjafjallajökull volcanic eruption period beginning 14 April 2010 to May but a pixel level classification method for separating various classes in the SEVIRI images. Three case studies on 19 April, 16 May, and 17 May are analyzed in extensive detail with other satellite data including the Moderate Resolution Imaging Spectroradiometer (MODIS), Multi-angle Imaging Spectroradiometer (MISR), Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), and Facility for Airborne Atmospheric Measurements (FAAM) BAe146 aircraft data to verify the aerosol spatial distribution maps generated by the SEVIRI algorithm. Our results indicate that the SEVIRI algorithm is able to track volcanic ash even at these high latitudes. Furthermore, the BAe146 aircraft data shows that the SEVIRI algorithm detects nearly all ash regions when AOD > 0.2. However, the algorithm has higher uncertainties when AOD is < 0.1 over water and AOD < 0.2 over land. The ash spatial distributions provided by this algorithm can be used as a critical input and validation for atmospheric dispersion models simulated by Volcanic Ash Advisory Centers (VAACs). Identifying volcanic ash is an important first step before quantitative retrievals of ash concentration can be made.


2011 ◽  
Vol 30 ◽  
pp. 23-29 ◽  
Author(s):  
D. Hadjimitsis ◽  
Z. Mitraka ◽  
I. Gazani ◽  
A. Retalis ◽  
N. Chrysoulakis ◽  
...  

Abstract. In this paper, the atmospheric precipitable water (PW) over the area of Cyprus was estimated by means of Advanced Very High Resolution Radiometer (AVHRR) thermal channels brightness temperature difference (ΔT). The AVHRR derived ΔT was calculated in a grid of 5 × 5 km cells; the corresponding PW value in each grid cell was extracted from Moderate Resolution Imaging Spectroradiometer (MODIS) Level 2 product (near-infrared algorithm). Once the PW – ΔT relationship coefficients corresponding to the area of Cyprus were calculated, the relationship was applied to AVHRR data for one month period. Radiosonde derived PW values, as well as MODIS independent PW values were used to validate the estimations and a good agreement was noted.


2011 ◽  
Vol 11 (12) ◽  
pp. 5839-5851 ◽  
Author(s):  
A. K. Mebust ◽  
A. R. Russell ◽  
R. C. Hudman ◽  
L. C. Valin ◽  
R. C. Cohen

Abstract. We use observations of fire radiative power (FRP) from the Moderate Resolution Imaging Spectroradiometer~(MODIS) and tropospheric NO2 column measurements from the Ozone Monitoring Instrument (OMI) to derive NO2 wildfire emission coefficients (g MJ−1) for three land types over California and Nevada. Retrieved emission coefficients were 0.279±0.077, 0.342±0.053, and 0.696±0.088 g MJ−1 NO2 for forest, grass and shrub fuels, respectively. These emission coefficients reproduce ratios of emissions with fuel type reported previously using independent methods. However, the magnitude of these coefficients is lower than prior estimates. While it is possible that a negative bias in the OMI NO2 retrieval over regions of active fire emissions is partly responsible, comparison with several other studies of fire emissions using satellite platforms indicates that current emission factors may overestimate the contributions of flaming combustion and underestimate the contributions of smoldering combustion to total fire emissions. Our results indicate that satellite data can provide an extensive characterization of the variability in fire NOx emissions; 67 % of the variability in emissions in this region can be accounted for using an FRP-based parameterization.


2013 ◽  
Vol 6 (9) ◽  
pp. 2495-2508 ◽  
Author(s):  
J. F. Meirink ◽  
R. A. Roebeling ◽  
P. Stammes

Abstract. Accurate calibration of satellite imagers is a prerequisite for using their measurements in climate applications. Here we present a method for the inter-calibration of geostationary and polar-orbiting imager solar channels based on regressions of collocated near-nadir reflectances. Specific attention is paid to correcting for differences in spectral response between instruments. The method is used to calibrate the solar channels of the Spinning Enhanced Visible and Infrared Imager (SEVIRI) on the geostationary Meteosat satellite with corresponding channels of the Moderate Resolution Imaging Spectroradiometer (MODIS) on the polar-orbiting Aqua satellite. The SEVIRI operational calibration is found to be stable during the years 2004 to 2009, but offset by −8, −6, and +3.5 % for channels 1 (0.6 μm), 2 (0.8 μm), and 3 (1.6 μm), respectively. These results are robust for a range of choices that can be made regarding data collocation and selection, as long as the viewing and illumination geometries of the two instruments are matched. Uncertainties in the inter-calibration method are estimated to be 1 % for channel 1 and 1.5 % for channels 2 and 3. A specific application of our method is the inter-calibration of polar imagers using SEVIRI as a transfer instrument. This offers an alternative to direct inter-calibration, which in general has to rely on high-latitude collocations. Using this method we have tied MODIS-Terra and Advanced Very High Resolution Radiometer (AVHRR) instruments on National Oceanic and Atmospheric Administration (NOAA) satellites 17 and 18 to MODIS-Aqua for the years 2007 to 2009. While reflectances of the two MODIS instruments differ less than 2 % for all channels considered, deviations of an existing AVHRR calibration from MODIS-Aqua reach −3.5 and +2.5 % for the 0.8 and 1.6 μm channels, respectively.


2014 ◽  
Vol 7 (2) ◽  
pp. 581-597 ◽  
Author(s):  
A. R. Naeger ◽  
S. A. Christopher

Abstract. In this paper, we develop an algorithm based on combining spectral, spatial, and temporal thresholds from the geostationary Spinning Enhanced Visible and Infrared Imager (SEVIRI) daytime measurements to identify and track different aerosol types, primarily volcanic ash. Contemporary methods typically do not use temporal information to identify ash. We focus not only on the identification and tracking of volcanic ash during the Eyjafjallajökull volcanic eruption period beginning in 14 April and ending 17 May 2010 but also on a pixel-level classification method for separating various classes in the SEVIRI images. Three case studies on 13, 16, and 17 May are analyzed in extensive detail with other satellite data including from the Moderate Resolution Imaging Spectroradiometer (MODIS), Multi-angle Imaging Spectroradiometer (MISR), and Facility for Airborne Atmospheric Measurements (FAAM) BAe146 aircraft data to verify the aerosol spatial distribution maps generated by the SEVIRI algorithm. Our results indicate that the SEVIRI algorithm is able to track volcanic ash when the solar zenith angle is lower than about 65°. Furthermore, the BAe146 aircraft data show that the SEVIRI algorithm detects nearly all ash regions when AOD > 0.2. However, the algorithm has higher uncertainties when AOD is < 0.1 over water and AOD < 0.2 over land. The ash spatial distributions provided by this algorithm can be used as a critical input and validation for atmospheric dispersion models simulated by Volcanic Ash Advisory Centers (VAACs). Identifying volcanic ash is an important first step before quantitative retrievals of ash concentration can be made.


Sign in / Sign up

Export Citation Format

Share Document