Small scale structures in the footprint tails of the Galilean moons observed by JIRAM

Author(s):  
Alessandro Moirano ◽  
Alessandro Mura ◽  
Alberto Adriani ◽  
Roberto Sordini ◽  
Alessandra Migliorini ◽  
...  

<p>The Jovian Infrared Auroral Mapper (JIRAM) on board Juno is a spectro-imager which is observing the<br>atmosphere of Jupiter and its auroral emission using its two imagers in the L (3.3-3.6μm) and M bands (4.5-<br>5.0μm) and a spectrometer (2-5 μm spectral range).<br>The highly elliptic orbit of Juno and the unprecedented resolution of the JIRAM imager allowed to retrieve<br>wealth of details about the morphology of moon-related aurorae. This phenomenon is due to the jovian magnetic<br>field sweeping past the Galiean moons, which generate Alfven waves travelling towards the ionosphere and set<br>up field aligned currents. When the associated electrons reach the ionosphere, they interact with the hydrogen<br>and make it to glow. In particular, the tails of the footprints showed a spot-like substructure consistently, which<br>were investigated using the L-band of the imager from perijove 4 to perijove 30. This feature was observed close<br>to the footprints, where the the typical distance between spots lies between 250km and 500km. This distance<br>decreases to 150km in a group of three observations in the northern emisphere when each moon is close to 250 ◦<br>west longitude. No correlation with orbital parameters such as the longitude of the moons was found so far,<br>which suggests that such morphology is almost purely due to ionospheric processes.<br>Moreover, during PJ 13 a long sequence of images of the Io footprint was shot and it revealed that the<br>secondary spots appears to corotate with Jupiter. This behaviour is observed also during orbits 14 and 26.<br>During these sequences JIRAM clearly observed the Io footprint leaving behind a trail of ”footsteps” as bright<br>spots.<br>The characteristics of these spots are incompatible with multiple reflection of Alfven waves between the two<br>emispheres. Instead, we are currently investigating ionospheric processes like the feedback instability (FI) as a<br>potential candidate to explain the generation of the observed small scale structure. This process relies on local<br>enhacement of conductivity in the ionosphere, which is affected by electron precipitation. Order of magnitude<br>estimates from the FI are compatible with the inter-spot distance and the stillness of the spots.</p>

2000 ◽  
Vol 179 ◽  
pp. 403-406
Author(s):  
M. Karovska ◽  
B. Wood ◽  
J. Chen ◽  
J. Cook ◽  
R. Howard

AbstractWe applied advanced image enhancement techniques to explore in detail the characteristics of the small-scale structures and/or the low contrast structures in several Coronal Mass Ejections (CMEs) observed by SOHO. We highlight here the results from our studies of the morphology and dynamical evolution of CME structures in the solar corona using two instruments on board SOHO: LASCO and EIT.


2007 ◽  
Vol 3 (S247) ◽  
pp. 152-157 ◽  
Author(s):  
Oddbjørn Engvold

AbstractSeismology has become a powerful tool in studies of the magnetic structure of solar prominences and filaments. Reversely, analytical and numerical models are guided by available information about the spatial and thermodynamical structure of these enigmatic structures. The present invited paper reviews recent observational results on oscillations and waves as well as details about small-scale structures and dynamics of prominences and filaments.


2009 ◽  
Vol 399 (1) ◽  
pp. 195-208 ◽  
Author(s):  
Jacco Th. van Loon ◽  
Keith T. Smith ◽  
Iain McDonald ◽  
Peter J. Sarre ◽  
Stephen J. Fossey ◽  
...  

1999 ◽  
Vol 17 (3) ◽  
pp. 375 ◽  
Author(s):  
Y. I. Galperin ◽  
J. M. Bosqued ◽  
R. A. Kovrazhkin ◽  
A. G. Yahnin

1993 ◽  
Vol 02 (02) ◽  
pp. 183-195 ◽  
Author(s):  
M. MOHAZZAB ◽  
R. BRANDENBERGER

The formation of cusps on long cosmic strings is discussed and the probability of cusp formation is estimated. The energy distribution of the gamma-ray background due to cusp annihilation on long strings is calculated and compared to observations. Under optimistic assumptions about the cusp formation rate, we find that strings with a mass per unit length μ less than Gμ=10−14 will have an observable effect. However, it is shown that the gamma-ray bursters cannot be attributed to long ordinary strings (or loops).


2018 ◽  
Vol 68 (4-5) ◽  
pp. 509-533 ◽  
Author(s):  
Zhuo Liu ◽  
Yinglong J. Zhang ◽  
Harry V. Wang ◽  
Hai Huang ◽  
Zhengui Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document