Does a stability constant decide on a repository permit?

Author(s):  
Theresa Hennig ◽  
Michael Kühn

<p>Safety of a nuclear waste repository is based to a large extent on the isolation of the radioactive waste within a suitable host rock. Clay rocks provide an option due to their very low hydraulic conductivity only allowing diffusive transport. Diffusion processes in clay formations are complex due to the diffuse double layers (DDL) enveloping the clay minerals to compensate their net surface charge and the associated different migration behaviour for cationic, anionic and neutral species. Therefore, determination of the speciation of an element in the porewater is essential to quantify migration lengths precisely. Safety assessments are based on numerical simulations to cover time periods of up to one million years and thus the predominant species of a radionuclide, dependent on the stability constants within the law of mass action, might be signififcant.</p><p>In the present study, we use uranium, one of the main components in spent fuel, as an example for the diffusion in the Swiss Opalinus Clay, a potential host rock for the storage of nuclear waste. In the geochemical system, uranium is mainly present as U(VI) in ternary uranyl complexes with calcium and carbonate, whereby speciation depends on the selected thermodynamic data (Hennig et al., 2020). For instance, the stability constants for the neutral uranyl complex Ca<sub>2</sub>UO<sub>2</sub>(CO<sub>3</sub>)<sub>3</sub> differ slightly in literature. Depending on the selected one, either the neutral or the anionic complex CaUO<sub>2</sub>(CO<sub>3</sub>)<sub>3</sub><sup>2-</sup> is the predominant species in the system with an associated varying interaction with the DDL of the clay minerals. With our one-dimensional, multi-component diffusion models we quantified the effect of the selected stability constant on the diffusion length for the host rock scale.</p><p>The chemistry in the porewater of the three facies of the Opalinus Clay, shaly, sandy and carbonate-rich, plays a key role for the sorption processes (Hennig et al., 2020) as well as for the composition and thickness of the DDL and therewith the diffusive transport. Based on our results, we show, that the influence of the predominant uranium species on the migration lengths varies between the individual facies, but is overall negligible for the host rock scale. Consequently, a stability constant is not decisive for the required thickness of the host rock as geological barrier.</p><p> </p><p>Hennig, T.; Stockmann, M.; Kühn, M. Simulation of diffusive uranium transport and sorption processes in the Opalinus Clay. Applied Geochemistry 2020, 123. doi:10.1016/j.apgeochem.2020.104777.</p>

2021 ◽  
Vol 56 ◽  
pp. 97-105
Author(s):  
Theresa Hennig ◽  
Michael Kühn

Abstract. The simulation of uranium migration through the Swiss Opalinus Clay is used as an example to quantify the influence of varying values of a stability constant in the underlying thermodynamic database on the migration lengths for the repository scale. Values for the stability constant of the neutral, ternary uranyl complex Ca2UO2(CO3)3 differ in literature by up to one order of magnitude. Within the studied geochemical system, either the neutral or the anionic complex CaUO2(CO3)32- is the predominant one, depending on the chosen value for the neutral complex. This leads to a changed interaction with the diffuse double layers (DDL) enveloping the clay minerals and thus can potentially influence the diffusive transport of uranium. Hence, two identical scenarios only differing in the value for the stability constant of the Ca2UO2(CO3)3 complex were applied in order to quantify and compare the migration lengths of uranium on the host rock scale (50 m) after a simulation time of one million years. We ran multi-component diffusion simulations for the shaly and sandy facies in the Opalinus Clay. A difference in the stability constant of 1.33 log units changes the migration lengths by 5 to 7 m for the sandy and shaly facies, respectively. The deviation is caused by the anion exclusion effect. However, with a maximum diffusion distance of 22 m, the influence of the stability constant of the Ca2UO2(CO3)3 complex on uranium migration in the Opalinus Clay is negligible on the host rock scale.


1963 ◽  
Vol 41 (1) ◽  
pp. 18-20 ◽  
Author(s):  
Vladimir Palaty

The stability constant of the sodium chelate of EDTA was determined by means of a sodium-sensitive glass electrode. It appears that a hydrogen chelate of the formula NaHY2− is formed in the neutral solution of EDTA, but is very unstable. The stability constants, pKNaY = −2.61 and pKNaHY = 0.03, are comparable to the value obtained by Schwarzenbach and Ackermann under different experimental conditions by a less sensitive method.


1987 ◽  
Vol 33 (3) ◽  
pp. 405-407 ◽  
Author(s):  
R B Martin ◽  
J Savory ◽  
S Brown ◽  
R L Bertholf ◽  
M R Wills

Abstract An understanding of Al3+-induced diseases requires identification of the blood carrier of Al3+ to the tissues where Al3+ exerts a toxic action. Quantitative studies demonstrate that the protein transferrin (iron-free) is the strongest Al3+ binder in blood plasma. Under plasma conditions of pH 7.4 and [HCO3-]27 mmol/L, the successive stability constant values for Al3+ binding to transferrin are log K1 = 12.9 and log K2 = 12.3. When the concentration of total Al3+ in plasma is 1 mumol/L, the free Al3+ concentration permitted by transferrin is 10(-14.6) mol/L, less than that allowed by insoluble Al(OH)3, by Al(OH)2H2PO4, or by complexing with citrate. Thus transferrin is the ultimate carrier of Al3+ in the blood. We also used intensity changes produced by metal ion binding to determine the stability constants for Fe3+ binding to transferrin: log K1 = 22.7 and log K2 = 22.1. These constants agree closely with a revision of the reported values obtained by equilibrium dialysis. By comparison with Fe3+ binding, the Al3+ stability constants are weaker than expected; this suggests that the significantly smaller Al3+ ions cannot coordinate to all the transferrin donor atoms available to Fe3+.


Soil Research ◽  
1997 ◽  
Vol 35 (6) ◽  
pp. 1279 ◽  
Author(s):  
S. B. Pandeya ◽  
A. K. Singh

The stability constants for the complexes formed between iron species existing in ambient soil environment and fulvic acids (FA) extracted from organic wastes like sewage sludge, farm yard manure (FYM), poultry manure, and press mud were determined in aqueous media of pH 5·0 and 8·5 by discontinuous spectrocolorimetric titration method. The values of stability constant (log K) of Fe–FA complexes estimated at pH 5·0 were 6·026, 6·212, 6·270, and 6·342 for FYM, sludge, poultry manure, and press mud, respectively. The respective values at pH 8·5 were 6·145, 6·276, 6·350, and 6·940. The order of the values of log K for different preparations of fulvic acids was press mud > poultry manure > sludge > FYM. The functional group contents, their pH of neutralisation, and electrostatic properties of the FA such as pKINT, pKm, and 0·868 nW, were found to be the determining factors for maximum binding ability of FA for metal cations and the stability constant of Fe–FA for different FA preparations. The basic assumptions and the limitations of the discontinuous spectrocolorimetric estimation of stability constants for Fe–FA are discussed.


1989 ◽  
Vol 44 (11) ◽  
pp. 1402-1406 ◽  
Author(s):  
W. Kuhr ◽  
G. Peters ◽  
W. Preetz

By 103Rh NMR spectroscopy the ten compounds of the system [RhCl„Br6_„]3-, n = 0-6 are identified by separate signals. A downfield shift of approximately 160 ppm is observed per substitution of Cl by Br, and the stereoisomers for n = 2, 3, 4 are separated by at least 4 ppm. From the relative intensities of the 103Rh signals in equilibrated solutions, whose total contents of Rh. Cl and Br are known, six individual stability constants are calculated. Their product gives the overall stability constant, indicating [RhBr6]3- to be 36,300 times more stable than [RhCl6]3-. On treatment of [RhBr6]3- with HCl cis/fac isomers are formed stereospecifically, whereas the reaction of [RhCl6]3- with HBr gives trans isomers, n = 2 and 4, containing 20—30% of the cis compounds; only mer-[RhCl3Br3] 3- is obtained pure. The high resolution spectra of [RhCl6]3- and [RhBr6]3- are exhibit five signals each, reflecting the intensity patterns of the most abundant isotopomers within [Rh35Cln37Cl6-n]3-, n = 2-6, and [Rh79Br„81Br6_„]3-, n = 1-5, respectively.


1967 ◽  
Vol 45 (14) ◽  
pp. 1643-1647 ◽  
Author(s):  
P. G. Manning

Stepwise stability constants have been determined for the 1:1 and 1:2 Eu3+:mandelate− and Eu3+:tartronate2− complexes in water. Measurements were made at low ionic strength and the temperature was 25 °C. The solvent-extraction–radiotracer method was used.For the mandelate system at an ionic strength of 0.104, K1 = 5.0 × 102, K2 = 1.58 × 102, and K1:K2 = 3.1. The K1:K2 ratios suggest monodentate ligandcy.The stepwise stability constants for the two stages of tartronate ion association are: K1 = 7.1 ( ± 15%) × 104 and K1K2 = 4.2 ( ± 5%) × 108. The magnitudes of the stability constants suggest that tartronate is a tridentate ligand. The stability constant ratios are discussed with reference to the ratios for piperidinedicarboxylate and iminodiacetate complexes.


Author(s):  
L. P. Bondareva ◽  
Y. S. Peregudov ◽  
A. V. Astapov

The task of isolating and separating amino acids from aqueous solutions exists in various industries. The traditional method of isolation is ligand exchange chromatography. When choosing a cation for ligand-binding chromatography based on its binding strength with the ion exchanger, often used as a sulfonated polystyrene ion exchanger keeps the copper (II) firmly enough, and therefore, it is easily replaced by other cations. Chelating ion exchangers charge cations of copper (II), which hold these ions firmly enough. In this case, separating a mixture of substances, it is due to differences in the constants of complexation agents and complexes distribution coefficients. The study of the interaction of amino acids with the aliphatic carboxylic acid, the exchange of phosphoric acid cations and the amino carboxylic and amino phosphonic polyampholytes has shown a significant effect of the pH of the medium on the nature of the sorption equilibria. Under certain conditions, in the phase of the ion exchanger in the form of complexing metal cations, the formation of new sorption centers is possible, which occur upon sorption of amino acids in the formation of mixed ligand compounds: the sorbent complex may simultaneously comprise amino acids and attached functional groups of the sorbent as ligands. The influence of the hydrogen index of the medium primarily affects the change in the nature of the formed complex compounds in the sorbent phase and the equilibrium solution and the ratio of their stability constants. If the stability constant of the ion exchanger complex is higher than the stability constant of the compound with a low molecular weight ligand, then the sorbed copper cations interact with incoming methionine ions without breaking the metal – functional group of the ion exchanger coordination bond. If the ratio of stability constants is the opposite, then the predominant elution of copper (II) cations occurs with the formation of complex compounds with an amino acid in an aqueous solution.


1980 ◽  
Vol 58 (12) ◽  
pp. 1253-1257 ◽  
Author(s):  
Mian S. Sun ◽  
Donald K. Harriss ◽  
Vincent R. Magnuson

Activity corrections for ionic equilibria in aqueous solutions at 25 °C and ionic strengths up to 0.5 have been investigated. An empirical formula for activity corrections was generated by statistically fitting stability constant data for approximately 540 complexes, for which both thermodynamic and concentration stability constants were known, to a modified Debye – Hückel relationship. The general formula is[Formula: see text]χ > 0, where Δ log K is the difference in the logarithms of the stability constants at infinite dilution and finite I (I ≤ 0.5), and χ is an even integer dependent only on the stoichiometry and charge of the ions involved. Activity correction formulae for ionic equilibria involving classes of ligands (amino acid, inorganic, amine, and organic acid) also were developed. The general formula predicts stability constant corrections within 0.1 log unit for 87 % of the data used at ionic strength 0.1 and 64 % of the data at ionic strength 0.5. In addition, single ion activity coefficients as a function of ionic strength, 0 < I ≤ 0.5, are presented.


2012 ◽  
Vol 10 (6) ◽  
pp. 1875-1881
Author(s):  
Tsvetanka Nedeltcheva ◽  
Andriana Surleva ◽  
Liliya Nikolova ◽  
Rahila Borissova ◽  
Stela Georgieva

AbstractSpectrophotometric study of competitive complex formation equilibria involving overlapped spectral responding species applying a simple and versatile algorithm was carried out. The algorithm involves multivariable regression for calculation of equilibrium concentrations from multiwavelength data and mass action law for the stability constant calculation. The used regression functions are part of common statistical software. Stability constants and complex stoichiometry of competing equilibria were simultaneously determined. The species concentration profiles at several spectral overlapping and α-coefficient of competing reaction were obtained. Non-absorbing bismuth — pyrophosphate (PPh) system was studied as a competitive reaction of bismuth — 4-(2-Pyridylazo) resorcinol (PAR) complex. The formation of Bi-PPh complex with 1:1 stoichiometry was proved in the studied concentration region (CBi = 1×10−5 mol L−1; CPPh = 5×10−6 − 1×10−4 mol L−1). The stability constant of the complex at pH 1 and µ = 1.0 have been determined: logβ = 4.2±0.2.


2017 ◽  
Vol 105 (8) ◽  
Author(s):  
Trevor Omoto ◽  
Nathalie A. Wall

AbstractThe stability constants for Tc(IV) complexation with the ligands IDA, NTA, HEDTA, and DTPA were determined in varied nitrate concentrations using liquid-liquid extraction methods. The determined log β


Sign in / Sign up

Export Citation Format

Share Document