Mining Contamination Disrupts Successional Change in Salt Marshes

Chris Smillie

<p>Salt marshes can generally be considered as sinks for metals. Research into salt marshes in Cornwall, UK suggests those estuaries heavily impacted by mining contamination are characterised by a less diverse vegetation compared with a significantly less-polluted site. Assessment using the National Vegetation Classification on the mid-marsh confirmed an Armeria maritima-dominated community was to be found in the most metal-enriched salt marsh of Restronguet Creek. However, this plant was co-dominant with Plantago maritima in the moderately contaminated marsh of Lelant and not present at all in the Camel, which has been subject to limited mining related contamination. Using canonical correspondence analysis, vegetation abundance data was compared with geochemical variables within the sediment. Metals were studied using extractions to signal bioavailability. P. maritima was not associated with the very high metal levels found in Restronguet Creek. A. maritima, had some association with soluble copper and was closer to the bulk of metals than P. maritima. As tolerance to adverse conditions and competitiveness are mutually exclusive, A. maritima, therefore, exists in a successional relationship with P. maritima. A. maritima then appears to be outcompeted by P. maritima in marshes with low metal loadings. Moderately high metal content results in a loss of competitiveness by P. maritima allowing A. maritima to co-dominate. In extremely metal-rich estuaries, however, P. maritima is unable to compete, allowing A. maritima to colonize the mid-marsh. Vegetation community may, therefore, be useful as an indicator of the level of metal contamination.</p>

2017 ◽  
Vol 71 (2) ◽  
pp. 155-165 ◽  
Aleksandar Dosic ◽  
Dragana Tomasevic-Pilipovic ◽  
Miladin Gligoric ◽  
Bozo Dalmacija ◽  
Djurdja Kerkez ◽  

Increasing amounts of residues and waste materials coming from industrial activities in different processes have become an increasingly urgent problem for the future. The paper presents the problem of mine tailings generated in mine ?Sase? (Republic of Srpska, Bosnia and Herzegovina) with high metal content (Pb, Cu and Zn). Dumpsite of this tailing represents potential risk for water bodies in the vicinity of this location. Chosen treatment process was stabilization/solidification (S/S). Inorganic agents used in this study were fly ash and red mud that represent secondary industrial waste generated on locations relatively near the mine. Therefore, their application can be used as an example of a sustainable solution of regional environmental problem. Further investigations are related to the impact of various factors on metals leaching from mine tailings solidified/stabilized material using the above mentioned immobilization agents. The performance of the immobilizing procedures was examined using several leaching tests: ANS 16.1, TCLP, DIN, MWLP. The results indicated that all S/S samples can be considered as non-hazardous waste, as all leached metal concentrations met the set criteria. These results will further enable the modelling of metals behaviour during long-term leaching from treated mine tailing. The data are invaluable in terms of economically and environmentally sound management of mine tailing.

Thomas J van Veelen ◽  
Harshinie Karunarathna ◽  
William G Bennett ◽  
Tom P Fairchild ◽  
Dominic E Reeve

The ability of coastal vegetation to attenuate waves has been well established (Moller et al., 2014). Salt marshes are vegetated coastal wetlands that can act as nature- based coastal defenses. They exhibit a range of plant species, which have been shown to differ in the amount of wave damping they provide (Mullarney & Henderson, 2018). Recent studies have shown that plant flexibility is a key parameter that controls wave energy dissipation (Paul et al., 2016). Yet, no model exists that includes plant flexibility in computationally efficient manner for large-scale coastal zones. Therefore, we have developed a new model for flexible vegetation based on the key mechanisms in the wave-vegetation interaction and applied it to an estuary with diverse salt marsh vegetation.Recorded Presentation from the vICCE (YouTube Link):

Biologia ◽  
2014 ◽  
Vol 69 (1) ◽  
Saverio Sciandrello ◽  
Valeria Tomaselli

AbstractAn overview of the salt-marsh herbland and scrub vegetation belonging to the class Salicornietea fruticosae Br.-Bl. et Tx. ex A. Bolòs y Vayreda 1950 in Apulia is presented. Data available from literature have been supplemented with original relevés performed in different locations of the Apulia region. On the basis of a total of 297 relevés, fifteen communities have been defined, according to the traditional phytosociological system based on dominant and/or diagnostic taxa. For comparison purposes, the salt-marsh vegetation has been classified using numerical methods. The results obtained show that most of the clusters correspond to specific associations, and confirm the division into vegetation alliances and orders. Numerical analysis also allowed us to assign the proper allocation of some associations and plant communities drawn from literature. Five alliances, with plant communities characterized by specific ecological features, have been discriminated: Sarcocornion alpini and Arthrocnemion glauci (lower marshes), Salicornion fruticosae (middle marshes), Inulion crithmoidis and Suaedion brevofoliae (upper marshes). In addition, during the field work, a population of Halocnemum strobilaceum (Arthrocnemo-Halocnemetum strobilacei), new record for the Apulia region, has been found.

2020 ◽  
Vol 34 (3) ◽  
pp. 2861-2869 ◽  
Xu-Quan Tang ◽  
Jing-Cao Pu ◽  
Hong-Bing Zheng ◽  
Xu-De Yu ◽  
Xue-Feng Chen ◽  

1995 ◽  
Vol 10 (7) ◽  
pp. 1700-1709 ◽  
Steven W. Webb ◽  
W.E. Jackson

High-pressure, high temperature (HPHT) annealing of synthetic type I diamond crystals at 1200–1700 °C and 50–60 kbar was found to induce aggregate-nitrogen dissociation and metal coalescence as well as heal diamond lattice dislocations. For crystals with low levels of metal inclusions, HPHT annealing was observed to increase the average compressive fracture strength of the crystals by apparently strengthening the strongest crystals of the population. Crystals with high metal-content, or otherwise of low quality, are weakened by anncaling. Strengthening is believed to occur by locally stabilizing the diamond lattice by healing lattice dislocations as well as dispersing nitrogen within the lattice. A general model is presented that ties together these results with those of other researchers.

2013 ◽  
Vol 115 ◽  
pp. 115-121 ◽  
Miguel Molina-Sabio ◽  
Mateus Carvalho Monteiro de Castro ◽  
Manuel Martinez-Escandell ◽  
Francisco Rodríguez-Reinoso

2020 ◽  
Lafage Denis ◽  
Carpentier Alexandre ◽  
Sylvain Duhamel ◽  
Christine Dupuy ◽  
Eric Feunteun ◽  

AbstractSalt marshes are under high, and increasing, anthropogenic pressures that have notably been reported to affect the diet of several fish species, probably resulting in nursery function alterations. Most of the previous studies in Europe were yet based on gut content analysis of fish, which can be considered a snapshot of immediate impacts of salt-marsh changes, and hardly of long-term effects of disturbances. In this study, we investigated the impact of vegetation type (resulting from both plant invasion and sheep grazing) by assessing trophic network (and especially fish diet and position) of different salt-marsh conditions. Replicated samples of basic sources (particular organic matter and microphytobenthos), dominant vegetation, potential aquatic and terrestrial prey and fish of 3 main species were taken during summer 2010 in two bays from Western France (Mont -Saint-Michel Bay and Seine Estuary) and analysed using C and N stable isotope compositions. All response variables tested (overall trophic organization, trophic niche and trophic position) provided consistent results, i.e. a dominant site effect and a weaker effect of vegetation type. Site effect was attributed to differences in anthropogenic Nitrogen inputs and tidal regime between the two bays, with more marine signatures associated with a higher frequency of flooding events. A second hypothesis is that E. acuta, which has recently totally replaced typical salt-marsh vegetation in Mont Saint-Michel Bay strongly impacted the nursery function. The trophic status of dominant fish species was unchanged by local salt-marsh vegetation, and considered consistent with their diet, i.e. high for predatory species (the sea bass Dicentrarchus labrax and the common goby Pomatoschistus microps) and lower for biofilm grazing species (the thinlip mullet Chelon ramada). This study finally highlights the relevance of stable isotopes analyses for assessing long-term and integrative effects of changes in vegetation resulting from human disturbances in salt marshes.HighlightsCross-ecosystem subsidies are of high functional importance, notably in salt marshesFish are vectors of exchanges, most European studies being based on their gut contentUsing stable isotopes we analysed the effect of surrounding vegetation on food websSurprisingly we found weak vegetation and strong site effects on all metricsNitrogen inputs, site accessibility and loss of nursery function can explain this factAbstract Figure

Sign in / Sign up

Export Citation Format

Share Document