Porous media as a canvas for hydro-bio-geo-chemical processes: Facing the challenges

Author(s):  
Xavier Sanchez-Vila

<p>The more we study flow and transport processes in porous media, the larger the number of questions that arise. Heterogeneity, uncertainty, multidisciplinarity, and interdisciplinarity are key words that make our live as researchers miserable… and interesting. There are many ways of facing complexity; this is equivalent as deciding what colors and textures to consider when being placed in front of a fresh canvas, or what are the sounds to include and combine in a music production. You can try to get as much as you can from one discipline, using very sophisticated state-of-the-art models. On the other hand, you can choose to bring to any given problem a number of disciplines, maybe having to sacrifice deepness in exchange of the better good of yet still sophisticated multifaceted solutions. There are quite a number of examples of the latter approach. In this talk, I will present a few of those, eventually concentrating in managed aquifer recharge (MAR) practices. This technology involves water resources from a myriad of perspectives, covering from climate change to legislation, from social awareness to reactive transport, from toxicological issues to biofilm formation, from circular economy to emerging compounds, from research to pure technological developments, and more. All of these elements deserve our attention as researchers, and we cannot pretend to master all of them. Integration, development of large research groups, open science are words that will appear in this talk. So does mathematics, and physics, and geochemistry, and organic chemistry, and biology. In any given hydrogeological problem you might need to combine equations, statistics, experiments, field work, and modeling; expect all of them in this talk. As groundwater complexity keeps amazing and mesmerizing me, do not expect solutions being provided, just anticipate more and more challenging research questions being asked.</p>

2020 ◽  
Author(s):  
Xavier Sanchez-Vila

<p>The more we study flow and transport processes in porous media, the larger the number of questions that arise. Heterogeneity, uncertainty, multidisciplinarity, and interdisciplinarity are key words that make our live as researchers miserable… and interesting. There are many ways of facing complexity; this is equivalent as deciding what colors and textures to consider when being placed in front of a fresh canvas, or what are the sounds to include and combine in a music production. You can try to get as much as you can from one discipline, using very sophisticated state-of-the-art models. On the other hand, you can choose to bring to any given problem a number of disciplines, maybe having to sacrifice deepness in exchange of the better good of yet still sophisticated multifaceted solutions. There are quite a number of examples of the latter approach. In this talk, I will present a few of those, eventually concentrating in managed aquifer recharge (MAR) practices. This technology involves water resources from a myriad of perspectives, covering from climate change to legislation, from social awareness to reactive transport, from toxicological issues to biofilm formation, from circular economy to emerging compounds, from research to pure technological developments, and more. All of these elements deserve our attention as researchers, and we cannot pretend to master all of them. Integration, development of large research groups, open science are words that will appear in this talk. So does mathematics, and physics, and geochemistry, and organic chemistry, and biology. In any given hydrogeological problem you might need to combine equations, statistics, experiments, field work, and modeling; expect all of them in this talk. As groundwater complexity keeps amazing and mesmerizing me, do not expect solutions being provided, just anticipate more and more challenging research questions being asked.</p>


2020 ◽  
Author(s):  
Maria Prieto Espinoza ◽  
Sylvain Weill ◽  
Raphaël Di chiara ◽  
Benjamin Belfort ◽  
François Lehmann ◽  
...  

<p>Reactive transport in porous media involves a complex interplay of multiple processes relative to flow of water and gases, transport of elements, chemical reactions and microbial activities. In surface-groundwater interfaces, the role of the capillary fringe is of particular interest as water table variations can strongly impact the transfer of gases (e.g. oxygen), the evolution of redox conditions and the evolution/adaptation of bacterial/microbial populations that control biodegradation pathways of contaminants. Although the understanding of individual processes is advanced, their interactions are not yet fully understood challenging the development of efficient reactive transport models (RTM) for predictive applications. In this context, the combination of microbial approaches with isotope measurements and modelling may be useful to understand reactive transport of halogenated pollutants in hydrogeological dynamic systems, to improve processes representation in RTMs, and to reduce model equifinality. Dichloromethane (DCM) is a toxic and volatile halogenated compound frequently detected in multi-contaminated aquifers. Although mechanisms of DCM microbial degradation under both aerobic and anaerobic conditions have been described, little is known about the relationships between the hydrogeochemical variations caused by water table fluctuations, as well as their effects on the diversity and distribution of bacterial communities and degradation pathways.<br>            In this study, two laboratory aquifers fed by contaminated groundwater from the industrial site Thermeroil (France) were designed to collect water samples at high-resolution to investigate the reactive transport of DCM in porous media under steady and dynamic hydrogeological conditions. The effect of water table variations on hydrochemical, microbial and isotopic composition (δ<sup>13</sup>C and δ<sup>37</sup>Cl) was examined to derive DCM mass removal and potential changes in degradation pathways. For the latter, Compound-Stable Isotope Analysis (CSIA) has been used as a tool to evaluate natural degradation of halogenated hydrocarbons. A RTM model (CubicM) is currently being developed to include dual-element CSIA and biological processes - such as growth, decay, attachment, detachment or dormancy – and relate changes in redox conditions with the evolution of DCM degrading populations. A two-phase flow model (i.e. water and gas) has been developed to account for the volatilization and the associated transport processes of halogenated volatile compounds in porous media. Currently, the model is tested on the experimental results to assist in the interpretation of DCM dissipation and the observed biogeochemical and microbial processes to determine the best-suited formalism to address the effect of water table fluctuations on DCM reactive transport in porous media. Such model will enable to assess natural attenuation of DCM at contaminated sites accounting for dynamic hydrogeological conditions.</p>


2021 ◽  
Author(s):  
Hugo Sanquer ◽  
Joris Heyman ◽  
Tanguy Le Borgne ◽  
Khalil Hanna

<p>Solute transport in porous media plays a key role in a range of chemical and biological processes, including contaminant degradation, precipitation, dissolution and microbiological dynamics. Increasing evidences have shown that the conventional complete mixing assumption at the pore scale can lead to a strong overestimation of reaction rates. Recent 3D imaging experiments of mixing in porous media suggest that these pore scale chemical gradients may be sustained by chaotic mixing dynamics. However, the consequences of such chaotic mixing on reactive processes are unknown.</p><p>In this work, we use reactive transport experiments coupled to 3D imaging to investigate the impact of micro-scale chaotic flows on mixing-limited reactions in the fluid phase.  We use optical index matching and laser-induced fluorescence to characterize the pore scale distribution of reactive product concentration for a range of Peclet and Damkhöler numbers. We use these measurements to develop a reactive lamellar theory that quantifies the impact of pore scale chemical gradients induced by chaotic mixing on effective reaction rates. These results provide new perspectives for upscaling reactive transport processes in porous media.</p>


2014 ◽  
Vol 78 (6) ◽  
pp. 1437-1447 ◽  
Author(s):  
M. Prieto

Supersaturation-Nucleation-Time (S-N-T) diagrams are shown to be a useful tool to predict nucleation during reactive-transport processes in porous media. Such diagrams can be determined experimentally or estimated from theoretical calculations based on classical nucleation theory. With this aim, a ‘pragmatic’ understanding of the nucleation rate equation is adopted here and the meaning and magnitude of the interfacial tension and induction time discussed. Theoretical diagrams and experimental data are shown to match fairly well as long as there is an appropriate choice of the ‘relevant’ volume for induction-time calculations.


2020 ◽  
Author(s):  
Amir Golparvar ◽  
Matthias Kästner ◽  
Martin Thullner

<p>The vadose zone hosts a wide range of various microorganisms which provide different soil ecosystem services from nutrient cycling to biodegradation of harmful chemical substances. The efficiency of such in-situ biodegradation is influenced by different biotic and abiotic factors ranging from physical properties of the soil to the redox conditions controlled by the activity of the involved chemical compounds. One important feature of the soil system is the dynamical and simultaneous interplay of these factors, boosting or deteriorating the residing microbial community’s abundance and/or activity and hence shaping biodegradation of vadose zone contaminants. Physical properties of porous media – e.g. the pore geometry, pore size distribution, connectivity as well as the water content – play a major role in enhancing or restricting the bioavailable concentration of contaminants and other reaction partners. Pore-scale phenomena have been shown to be considerably affecting the macro-scale processes, therefore a quantitative bottom-top approach of these mechanisms in situ is adamant. Hence it is of paramount importance to understand the effect of soil physical properties on microbial activity and biodegradation of carbon compounds in soil.</p><p>Pore scale reactive transport processes have a complex, nonlinear dependency on the aforementioned factors, which severely challenges the experimental and/or numerical investigation of biodegradation at in in-situ conditions. However, the recent technological advances, specifically the imaging techniques, have made it easier to study biological and microbial evolution in porous media, but there is still a need for putting all these information together. For this purpose, numerical methods would offer the possibility of simulating a variable/controllable water saturation conditions and considering water/air dynamics and advective and diffusive micro-scale transport of all components in both, air and water phase, in porous medium structures directly obtained from CT scanned samples. Up to now, such pore-sale model approaches considering also the fate of biogeochemically reactive compounds are scarce. In this work we propose a novel reactive transport modelling technique combining the pore-scale numerical characterization of water flow and solute transport in unsaturated porous media and of biogeochemical process. For a variably saturated porous system, the presented model approach is solving the Navier Stokes equation and scalar transport equations for any arbitrary geometry and is simulating the dynamics of biogeochemical processes with any degree of complexity. Simulations are compared to experimental data to assess the effect of soil physical properties on the transport and degradation of contaminants in soil.</p>


2020 ◽  
Vol 117 (24) ◽  
pp. 13359-13365 ◽  
Author(s):  
Joris Heyman ◽  
Daniel R. Lester ◽  
Régis Turuban ◽  
Yves Méheust ◽  
Tanguy Le Borgne

Fluid flow in porous media drives the transport, mixing, and reaction of molecules, particles, and microorganisms across a wide spectrum of natural and industrial processes. Current macroscopic models that average pore-scale fluctuations into an effective dispersion coefficient have shown significant limitations in the prediction of many important chemical and biological processes. Yet, it is unclear how three-dimensional flow in porous structures govern the microscale chemical gradients controlling these processes. Here, we obtain high-resolution experimental images of microscale mixing patterns in three-dimensional porous media and uncover an unexpected and general mixing mechanism that strongly enhances concentration gradients at pore-scale. Our experiments reveal that systematic stretching and folding of fluid elements are produced in the pore space by grain contacts, through a mechanism that leads to efficient microscale chaotic mixing. These insights form the basis for a general kinematic model linking chaotic-mixing rates in the fluid phase to the generic structural properties of granular matter. The model successfully predicts the resulting enhancement of pore-scale chemical gradients, which appear to be orders of magnitude larger than predicted by dispersive approaches. These findings offer perspectives for predicting and controlling the vast diversity of reactive transport processes in natural and synthetic porous materials, beyond the current dispersion paradigm.


Water ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1088
Author(s):  
Anis Younes ◽  
Marwan Fahs ◽  
Philippe Ackerer

Modeling fluid flow and transport processes in porous media is a relevant topic for a wide range of applications. In water resources problems, this topic presents specific challenges related to the multiphysical processes, large time and space scales, heterogeneity and anisotropy of natural porous media, and complex mathematical models characterized by coupled nonlinear equations. This Special Issue aims at collecting papers presenting new developments in the field of flow and transport in porous media. The 25 published papers deal with different aspects of physical processes and applications such as unsaturated and saturated flow, flow in fractured porous media, landslide, reactive transport, seawater intrusion, and transport within hyporheic zones. Based on their objectives, we classified these papers into four categories: (i) improved numerical methods for flow and mass transport simulation, (ii) looking for reliable models and parameters, (iii) laboratory scale experiments and simulations, and (iv) modeling and simulations for improved process understanding. Current trends on modeling fluid flow and transport processes in porous media are discussed in the conclusion.


Sign in / Sign up

Export Citation Format

Share Document