The role of diabatic heating in Ferrel cell dynamics

Author(s):  
Orli Lachmy ◽  
Yohai Kaspi

<p>The Ferrel cell consists of the zonal mean vertical and meridional winds in the midlatitudes. The continuity of the Ferrel circulation and the zonal mean momentum and heat budgets imply a collocation of the eddy-driven jet and poleward eddy heat flux maxima, under certain assumptions, including the negligibility of diabatic heating. The latter assumption is questioned, since midlatitude storms are associated with latent heating in the midtroposphere. In this study, the heat budget of the Ferrel cell in both hemispheres is examined, using the JRA55 reanalysis data set. The diabatic heating rate is significant close to the center of the Ferrel cell during winter and at the ascending branch during summer in both hemispheres. The interannual variability shows a positive correlation between the diabatic heating rate in the midlatitude midtroposphere and the latitudinal separation between the eddy heat flux and the eddy-driven jet maxima during winter in both hemispheres.</p>

2008 ◽  
Vol 38 (1) ◽  
pp. 65-83 ◽  
Author(s):  
Ivana Cerovečki ◽  
John Marshall

Abstract Eddy modulation of the air–sea interaction and convection that occurs in the process of mode water formation is analyzed in simulations of a baroclinically unstable wind- and buoyancy-driven jet. The watermass transformation analysis of Walin is used to estimate the formation rate of mode water and to characterize the role of eddies in that process. It is found that diabatic eddy heat flux divergences in the mixed layer are comparable in magnitude, but of opposite sign, to the surface air–sea heat flux and largely cancel the direct effect of buoyancy loss to the atmosphere. The calculations suggest that mode water formation estimates based on climatological air–sea heat flux data and outcrops, which do not fully resolve ocean eddies, may neglect a large opposing term in the heat budget and are thus likely to significantly overestimate true formation rates. In Walin’s watermass transformation framework, this manifests itself as a sensitivity of formation rate estimates to the averaging period over which the outcrops and air–sea fluxes are subjected. The key processes are described in terms of a transformed Eulerian-mean formalism in which eddy-induced mean flow tends to cancel the Eulerian-mean flow, resulting in weaker residual mean flow, subduction, and mode water formation rates.


2004 ◽  
Vol 17 (22) ◽  
pp. 4443-4452 ◽  
Author(s):  
Alexei Karpetchko ◽  
Grigory Nikulin

Abstract Using NCEP–NCAR reanalysis data the authors show that the November–December averaged stratospheric eddy heat flux is strongly anticorrelated with the January–February averaged eddy heat flux in the midlatitude stratosphere and troposphere. This finding further emphasizes differences between early and midwinter stratospheric wave flux behavior, which has recently been found in long-term variations. Analysis suggests that the intraseasonal anticorrelation of stratospheric heat fluxes results from changes in the upward wave propagation in the troposphere. Stronger (weaker) upward wave fluxes in early winter lead to weaker (stronger) upward wave fluxes from the troposphere during midwinter. Also, enhanced equatorward wave refraction during midwinter (due to the stronger polar night jet) is associated with weak heat flux in the early winter. It is suggested that the effect of enhanced midwinter upward wave flux from the troposphere in the years with weak early winter heat flux overcompensates the effect of increased equatorward wave refraction in midwinter, leading to a net increase of midwinter upward wave fluxes into the stratosphere.


2011 ◽  
Vol 24 (22) ◽  
pp. 5831-5849 ◽  
Author(s):  
Virginie Guemas ◽  
Francis Codron

Abstract This article examines the sensitivity of the Laboratoire de Météorologie Dynamique Model with Zoom Capability (LMDZ), a gridpoint atmospheric GCM, to changes in the resolution in latitude and longitude, focusing on the midlatitudes. In a series of dynamical core experiments, increasing the resolution in latitude leads to a poleward shift of the jet, which also becomes less baroclinic, while the maximum eddy variance decreases. The distribution of the jet positions in time also becomes wider. On the contrary, when the resolution increases in longitude, the position and structure of the jet remain almost identical, except for a small equatorward shift tendency. An increase in eddy heat flux is compensated by a strengthening of the Ferrel cell. The source of these distinct behaviors is then explored in constrained experiments in which the zonal-mean zonal wind is constrained toward the same reference state while the resolution varies. While the low-level wave sources always increase with resolution in that case, there is also enhanced poleward propagation when increasing the resolution in longitude, preventing the jet shift. The diverse impacts on the midlatitude dynamics hold when using the full GCM in a realistic setting, either forced by observed SSTs or coupled to an ocean model.


2011 ◽  
Vol 11 (21) ◽  
pp. 11221-11235 ◽  
Author(s):  
M. Weber ◽  
S. Dikty ◽  
J. P. Burrows ◽  
H. Garny ◽  
M. Dameris ◽  
...  

Abstract. The effect of the winter Brewer-Dobson circulation (BDC) on the seasonal and decadal evolution of total ozone in both hemispheres is investigated using satellite total ozone data from the merged GOME/SCIAMACHY/GOME-2 (GSG) data set (1995–2010) and outputs from two chemistry-climate models (CCM), the FUB-EMAC and DLR-E39C-A models. Combining data from both hemispheres a linear relationship between the winter average extratropical 100 hPa eddy heat flux and the ozone ratio with respect to fall ozone levels exists and is statistically significant for tropical as well as polar ozone. The high correlation at high latitudes persists well into the summer months until the onset of the next winter season. The anti-correlation of the cumulative eddy heat flux with tropical ozone ratios, however, breaks down in spring as the polar vortex erodes and changes to a weak positive correlation similar to that observed at high latitudes. The inter-annual variability and decadal evolution of ozone in each hemisphere in winter, spring, and summer are therefore driven by the cumulative effect of the previous winter's meridional circulation. This compact linear relationship is also found in both CCMs used in this study indicating that current models realistically describe the variability in stratospheric circulation and its effect on total ozone. Both models show a positive trend in the winter mean eddy heat flux (and winter BDC strength) in both hemispheres until year 2050, however the inter-annual variability (peak-to-peak) is two to three times larger than the mean change between 1960 and 2050. It is, nevertheless, possible to detect a shift in this compact linear relationship related to past and future changes in the stratospheric halogen load. Using the SBUV/TOMS/OMI (MOD V8) merged data set (1980–2010), it can be shown that from the decade 1990–1999 to 2000–2010 this linear relationship remained unchanged (before and after the turnaround in the stratospheric halogen load), while a shift is evident between 1980–1989 (upward trend in stratospheric halogen) and the 1990s, which is a clear sign that an onset of recovery is detectable despite the large variability in polar ozone. Because of the large variability from year to year in the BDC circulation substantial polar ozone depletion may still occur in coming decades in selected winters with weak BDC and very low polar stratospheric temperatures.


2014 ◽  
Vol 14 (24) ◽  
pp. 13439-13453 ◽  
Author(s):  
S. Fueglistaler ◽  
M. Abalos ◽  
T. J. Flannaghan ◽  
P. Lin ◽  
W. J. Randel

Abstract. The contribution of dynamical forcing to variations and trends in tropical lower stratospheric 70 hPa temperature for the period 1980–2011 is estimated based on ERA-Interim and Modern-Era Retrospective Analysis for Research and Applications (MERRA) reanalysis data. The dynamical forcing is estimated from the tropical mean residual upwelling calculated with the momentum balance equation, and with a simple proxy based on eddy heat fluxes averaged between 25° and 75° in both hemispheres. The thermodynamic energy equation with Newtonian cooling is used to relate the dynamical forcing to temperature. The deseasonalised, monthly mean time series of all four calculations are highly correlated (~ 0.85) with temperature for the period 1995–2011 when variations in radiatively active tracers are small. All four calculations provide additional support to previously noted prominent aspects of the temperature evolution 1980–2011: an anomalously strong dynamical cooling (~ −1 to −2 K) following the Pinatubo eruption that partially offsets the warming from enhanced aerosol, and a few years of enhanced dynamical cooling (~ −0.4 K) after October 2000 that contributes to the prominent drop in water entering the stratosphere at that time. The time series of dynamically forced temperature calculated with the same method are more highly correlated and have more similar trends than those from the same reanalysis but with different methods. For 1980–2011 (without volcanic periods), the eddy heat flux calculations give a dynamical cooling of ~ −0.1 to ~ −0.25 K decade−1 (magnitude sensitive to latitude belt considered and reanalysis), largely due to increasing high latitude eddy heat flux trends in September and December–January. The eddy heat flux trends also explain the seasonality of temperature trends very well, with maximum cooling in January–February. Trends derived from momentum balance calculations show near-zero annual mean dynamical cooling, with weaker seasonal trends especially in December–January. These contradictory results arising from uncertainties in data and methods are discussed and put in context to previous analyses.


2007 ◽  
Vol 37 (3) ◽  
pp. 518-530 ◽  
Author(s):  
Kathleen A. Edwards ◽  
Kathryn A. Kelly

Abstract A seasonal heat budget is based on observations that span the broad California Current (CC) region. Budget terms are estimated from satellite data (oceanic heat advection), repeat ship transects (heat storage rate), and the Comprehensive Ocean–Atmosphere Data Set (COADS) (surface heat flux). The balance between terms differs with distance from shore. Offshore, a local balance between the heat storage rate and net heat flux (Q0) holds; the latter is dominated by its shortwave component QSW. Shoreward of ∼500 km, oceanic heat advection shifts the phase of the heat storage rate to earlier in the year and partially offsets an increase in Q0 due to cloud clearing. During the summer maximum of Q0, the ∼500-km-wide CC region loses heat to alongshore geostrophic transport, offshore Ekman transport, and, to a lesser degree, cross-shore geostrophic transport and eddy transport. The advective heat loss is neither uniform in space nor temporal phase; instead, the region of geostrophic and eddy heat loss expands cross shore with the annual widening of the California Current to ∼500 km. This expansion begins in spring with the onset of equatorward winds. A region of relatively positive wind stress curl widens at the same gradual rate as the CC, suggesting a coupling mechanism between the two.


2014 ◽  
Vol 14 (13) ◽  
pp. 7059-7074 ◽  
Author(s):  
W. Chehade ◽  
M. Weber ◽  
J. P. Burrows

Abstract. The study presents a long-term statistical trend analysis of total ozone data sets obtained from various satellites. A multi-variate linear regression was applied to annual mean zonal mean data using various natural and anthropogenic explanatory variables that represent dynamical and chemical processes which modify global ozone distributions in a changing climate. The study investigated the magnitude and zonal distribution of the different atmospheric chemical and dynamical factors contributing to long-term total ozone changes. The regression model included the equivalent effective stratospheric chlorine (EESC), the 11-year solar cycle, the quasi-biennial oscillation (QBO), stratospheric aerosol loading describing the effects from major volcanic eruptions, the El Niño–Southern Oscillation (ENSO), the Arctic and Antarctic oscillation (AO/AAO), and accumulated eddy heat flux (EHF), the latter representing changes due to the Brewer–Dobson circulation. The total ozone column data set used here comprises the Solar Backscater Ultraviolet SBUV/SBUV-2 merged ozone data set (MOD) V8.6, the merged data set of the Solar Backscaterr Ultraviolet, the Total Ozone Mapping Spectrometer and the Ozone Monitoring Instrument SBUV/TOMS/OMI (1979–2012) MOD V8.0 and the merged data set of the Global Ozone Monitoring Experiment, the Scanning Imaging Absorption spectroMeter for Atmospheric ChartograpHY and the Global Ozone Monitoring Experiment 2 GOME/SCIAMACHY/GOME-2 (GSG) (1995–2012). The trend analysis was performed for twenty-six 5° wide latitude bands from 65° S to 65° N, and the analysis explained most of the ozone variability to within 70 to 90%. The results show that QBO dominates the ozone variability in the tropics (±7 DU) while at higher latitudes, the dynamical indices, AO/AAO and eddy heat flux, have substantial influence on total ozone variations by up to ±10 DU. The contribution from volcanic aerosols is only prominent during the major eruption periods (El Chichón and Mt. Pinatubo), and together with the ENSO signal, is more evident in the Northern Hemisphere. The signature of the solar cycle covers all latitudes and contributes about 10 DU from solar maximum to solar minimum. EESC is found to be a main contributor to the long-term ozone decline and the trend changes after the end of the 1990s. From the EESC fits, statistically significant upward trends after 1997 were found in the extratropics, which points at the slowing of ozone decline and the onset of ozone recovery. The EESC based trends are compared with the trends obtained from the statistical piecewise linear trend (PWLT) model (known as hockey stick) with a turnaround in 1997 to examine the differences between both approaches. In case of the SBUV merged V8.6 data the EESC and PWLT trends before and after 1997 are in good agreement (within 2 σ), however, the positive post-1997 linear trends from the PWLT regression are not significant within 2 σ. A sensitivity study is carried out by comparing the regression results, using SBUV/SBUV-2 MOD V8.6 merged time series (1979–2012) and a merged data set combining SBUV/SBUV-2 (1979–June 1995) and GOME/SCIAMACHY/GOME-2 ("GSG") WFDOAS (Weighting Function DOAS) (July 1995–2012) as well as SBUV/TOMS/OMI MOD V8.0 (1979–2012) in the regression analysis in order to investigate the uncertainty in the long-term trends due to different ozone data sets and data versions. Replacing the late SBUV/SBUV-2 merged data record with GSG data (unscaled and adjusted) leads to very similar results demonstrating the high consistency between satellite data sets. However, the comparison of the new SBUV/SBUV-2 MOD V8.6 with the MOD V8.0 and MOD8.6/GSG data showed somewhat smaller sensitivities with regard to several proxies as well as the linear EESC trends. On the other hand, the PWLT trends after 1997 show some differences, however, within the 2 σ error bars the PWLT trends agree with each other for all three data sets.


2018 ◽  
Vol 76 (1) ◽  
pp. 3-9
Author(s):  
Renqiang Liu ◽  
Yanyan Fu

Abstract Temperature changes in the Arctic lower stratosphere on both short- and long-term time scales are critical for changing the magnitude of ozone losses in the Arctic vortex. In this paper, an approximate month-to-month temperature change equation is constructed and extended to a new form for decade-to-decade changes. Then we provide a verification of these equations and show an example of an application for partitioning between the dynamical and radiative contributions to the Arctic lower-stratospheric temperature decadal changes, as well as the trends, using the European Centre for Medium-Range Weather Forecasts (ECMWF) interim reanalysis (ERA-Interim) data during the period of 1980–99. At 100 hPa, the month-to-month Arctic temperature increment is a small term compared to the dynamical heating and diabatic heating, which are largely canceling terms with maximum magnitudes in November–April and October–March, respectively. However, it is not the case for their decadal changes and the decadal change of the Arctic current-month temperature compared to those of the regressed dynamical heating and radiative heating, where the current-month decadal changes and the corresponding trends are approached except in March and a rough agreement exists between these trends and those reported in other studies. The dynamical plus diabatic heating term and the temperature increment, as well as their decadal changes, are roughly balanced during the annual oscillation. However, some departures exist in both cases because of the large deviations or uncertainties of relevant terms and also probably due to the quasigeostrophic approximation and the eddy heat flux approximation of the dynamical heating, and a restricted condition of the eddy heat flux approximation is given at the end.


2007 ◽  
Vol 7 (10) ◽  
pp. 2575-2584 ◽  
Author(s):  
A. J. Haklander ◽  
P. C. Siegmund ◽  
H. M. Kelder

Abstract. The strength of the stratospheric wave driving during northern winter is often quantified by the January–February mean poleward eddy heat flux at 100 hPa, averaged over 40°–80° N (or a similar area and period). Despite the dynamical and chemical relevance of the wave driving, the causes for its variability are still not well understood. In this study, ERA-40 reanalysis data for the period 1979–2002 are used to examine several factors that significantly affect the interannual variability of the wave driving. The total poleward heat flux at 100 hPa is poorly correlated with that in the troposphere, suggesting a decoupling between 100 hPa and the troposphere. However, the individual zonal wave-1 and wave-2 contributions to the wave driving at 100 hPa do exhibit a significant coupling with the troposphere, predominantly their stationary components. The stationary wave-1 contribution to the total wave driving significantly depends on the latitude of the stationary wave-1 source in the troposphere. The results suggest that this dependence is associated with the varying ability of stationary wave-1 activity to enter the tropospheric waveguide at mid-latitudes. The wave driving anomalies are separated into three parts: one part due to anomalies in the zonal correlation coefficient between the eddy temperature and eddy meridional wind, another part due to anomalies in the zonal eddy temperature amplitude, and a third part due to anomalies in the zonal eddy meridional wind amplitude. It is found that year-to-year variability in the zonal correlation coefficient between the eddy temperature and the eddy meridional wind is the most dominant factor in explaining the year-to-year variability of the poleward eddy heat flux.


Sign in / Sign up

Export Citation Format

Share Document