A probabilistic model for assessing debris flow propagation at regional scale: a case study in Campania region, Italy

Author(s):  
Luca Crescenzo ◽  
Gaetano Pecoraro ◽  
Michele Calvello ◽  
Richard Guthrie

<p>Debris flows and debris avalanches are rapid to extremely rapid landslides that tend to travel considerable distances from their source areas. Interaction between debris flows and elements at risk along their travel path may result in potentially significant destructive consequences. One of the critical challenges to overcome with respect to debris flow risk is, therefore, the credible prediction of their size, travel path, runout distance, and depths of erosion and deposition. To these purposes, at slope or catchment scale, sophisticated physically-based models, appropriately considering several factors and phenomena controlling the slope failure mechanisms, may be used. These models, however, are computationally costly and time consuming, and that significantly hinders their applicability at regional scale. Indeed, at regional scale, debris flows hazard assessment is usually carried out by means of qualitative approaches relying on field surveys, geomorphological knowledge, geometric features, and expert judgement.</p><p>In this study, a quantitative modelling approach based on cellular automata methods, wherein individual cells move across a digital elevation model (DEM) landscape following behavioral rules defined probabilistically, is proposed and tested. The adopted model, called LABS, is able to estimate erosion and deposition soil volumes along a debris flow path by deploying at the source areas autonomous subroutines, called agents, over a 5 m spatial resolution DEM, which provides the basic information to each agent in each time-step. Rules for scour and deposition are based on mass balance considerations and independent probability distributions defined as a function of slope DEM-derived values and a series of model input parameters. The probabilistic rules defined in the model are based on data gathered for debris flows and debris avalanches that mainly occurred in western Canada. This study mainly addresses the applicability and the reliability of this modelling approach to areas in southern Italy, in Campania region, historically affected by debris flows in pyroclastic soils. To this aim, information on inventoried debris flows is used in different study areas to evaluate the effect on the predictions of the model input parameter values, as well as of different native DEM resolutions.</p>

2003 ◽  
Vol 3 (5) ◽  
pp. 457-468 ◽  
Author(s):  
G. Iovine ◽  
S. Di Gregorio ◽  
V. Lupiano

Abstract. On 15–16 December 1999, heavy rainfall severely stroke Campania region (southern Italy), triggering numerous debris flows on the slopes of the San Martino Valle Caudina-Cervinara area. Soil slips originated within the weathered volcaniclastic mantle of soil cover overlying the carbonate skeleton of the massif. Debris slides turned into fast flowing mixtures of matrix and large blocks, downslope eroding the soil cover and increasing their original volume. At the base of the slopes, debris flows impacted on the urban areas, causing victims and severe destruction (Vittori et al., 2000). Starting from a recent study on landslide risk conditions in Campania, carried out by the Regional Authority (PAI –Hydrogeological setting plan, in press), an evaluation of the debris-flow susceptibility has been performed for selected areas of the above mentioned villages. According to that study, such zones would be in fact characterised by the highest risk levels within the administrative boundaries of the same villages ("HR-zones"). Our susceptibility analysis has been performed by applying SCIDDICA S3–hex – a hexagonal Cellular Automata model (von Neumann, 1966), specifically developed for simulating the spatial evolution of debris flows (Iovine et al., 2002). In order to apply the model to a given study area, detailed topographic data and a map of the erodable soil cover overlying the bedrock of the massif must be provided (as input matrices); moreover, extent and location of landslide source must also be given. Real landslides, selected among those triggered on winter 1999, have first been utilised for calibrating SCIDDICA S3–hex and for defining "optimal" values for parameters. Calibration has been carried out with a GIS tool, by quantitatively comparing simulations with actual cases: optimal values correspond to best simulations. Through geological evaluations, source locations of new phenomena have then been hypothesised within the HR-zones. Initial volume for these new cases has been estimated by considering the actual statistics of the 1999 landslides. Finally, by merging the results of simulations, a deterministic susceptibility zonation of the considered area has been obtained. In this paper, aiming at illustrating the potential for debris-flow hazard analyses of the model SCIDDICA S3–hex, a methodological example of susceptibility zonation of the Vallicelle HR-zone is presented.


2018 ◽  
Vol 22 (6) ◽  
pp. 3493-3513 ◽  
Author(s):  
Karin Mostbauer ◽  
Roland Kaitna ◽  
David Prenner ◽  
Markus Hrachowitz

Abstract. Debris flows represent frequent hazards in mountain regions. Though significant effort has been made to predict such events, the trigger conditions as well as the hydrologic disposition of a watershed at the time of debris flow occurrence are not well understood. Traditional intensity-duration threshold techniques to establish trigger conditions generally do not account for distinct influences of rainfall, snowmelt, and antecedent moisture. To improve our knowledge on the connection between debris flow initiation and the hydrologic system at a regional scale, this study explores the use of a semi-distributed conceptual rainfall–runoff model, linking different system variables such as soil moisture, snowmelt, or runoff with documented debris flow events in the inner Pitztal watershed, Austria. The model was run on a daily basis between 1953 and 2012. Analysing a range of modelled system state and flux variables at days on which debris flows occurred, three distinct dominant trigger mechanisms could be clearly identified. While the results suggest that for 68 % (17 out of 25) of the observed debris flow events during the study period high-intensity rainfall was the dominant trigger, snowmelt was identified as the dominant trigger for 24 % (6 out of 25) of the observed debris flow events. In addition, 8 % (2 out of 25) of the debris flow events could be attributed to the combined effects of low-intensity, long-lasting rainfall and transient storage of this water, causing elevated antecedent soil moisture conditions. The results also suggest a relatively clear temporal separation between the distinct trigger mechanisms, with high-intensity rainfall as a trigger being limited to mid- and late summer. The dominant trigger in late spring/early summer is snowmelt. Based on the discrimination between different modelled system states and fluxes and, more specifically, their temporally varying importance relative to each other, this exploratory study demonstrates that already the use of a relatively simple hydrological model can prove useful to gain some more insight into the importance of distinct debris flow trigger mechanisms. This highlights in particular the relevance of snowmelt contributions and the switch between mechanisms during early to mid-summer in snow-dominated systems.


1985 ◽  
Vol 22 (10) ◽  
pp. 1492-1502 ◽  
Author(s):  
John J. Clague ◽  
S. G. Evans ◽  
Iain G. Blown

A very large debris flow of unusual origin occurred in the basin of Klattasine Creek (southern Coast Mountains, British Columbia) between June 1971 and September 1973. The flow was triggered by the sudden release of up to 1.7 × 106 m3 of water from a moraine-dammed lake at the head of a tributary of Klattasine Creek. Water escaping from the lake mobilized large quantities of unconsolidated sediment in the valley below and thus produced a debris flow that travelled in one or, more likely, several surges 8 km downvalley on an average gradient of 10° to the mouth of the stream. Here, the flow deposited a sheet of coarse bouldery debris up to about 20 m thick, which temporarily blocked Homathko River. Slumps, slides, and debris avalanches occurred on the walls of the valley both during and in years following the debris flow. Several secondary debris flows of relatively small size have swept down Klattasine Creek in the 12–14 years since Klattasine Lake drained.


2015 ◽  
Vol 15 (3) ◽  
pp. 587-602 ◽  
Author(s):  
M. Berenguer ◽  
D. Sempere-Torres ◽  
M. Hürlimann

Abstract. This work presents a technique for debris-flow (DF) forecasting able to be used in the framework of DF early warning systems at regional scale. The developed system is applied at subbasin scale and is based on the concepts of fuzzy logic to combine two ingredients: (i) DF subbasin susceptibility assessment based on geomorphological variables and (ii) the magnitude of the rainfall situation as depicted from radar rainfall estimates. The output of the developed technique is a three-class warning ("low", "moderate" or "high") in each subbasin when a new radar rainfall map is available. The developed technique has been applied in a domain in the eastern Pyrenees (Spain) from May to October 2010. The warning level stayed "low" during the entire period in 20% of the subbasins, while in the most susceptible subbasins the warning level was at least "moderate" for up to 10 days. Quantitative evaluation of the warning level was possible in a subbasin where debris flows were monitored during the analysis period. The technique was able to identify the three events observed in the catchment (one debris flow and two hyperconcentrated flow events) and produced no false alarm.


2005 ◽  
Vol 42 (3) ◽  
pp. 919-931 ◽  
Author(s):  
Fumitoshi Imaizumi ◽  
Satoshi Tsuchiya ◽  
Okihiro Ohsaka

Although information on the behaviour of debris flow in the initiation zone is important for the development of mitigative measures, field data regarding this behaviour are scarce. This research examines the behaviour of debris flow in the initiation zone, based on field observations in the upper Ichinosawa catchment of the Ohya landslide in Japan. In spring 1998, a monitoring system, consisting of video cameras, ultrasonic sensors, capacitive water depth probes, and water pressure sensors (WPS), was installed to assess the behaviour of debris flows in the initiation zone. On the basis of video image analysis, we found that main flow phases during debris-flow events consisted of flow containing largely muddy water and flow containing largely cobbles and boulders. Data obtained from ultrasonic sensors and WPS show that the former flow type (muddy flow) has large amounts of interstitial water throughout its mass, whereas the latter flow type has an unsaturated layer in the upper portion. Results indicate that the concentration of solids in debris flows differs from flow to flow. Debris flows in the upper Ichinosawa catchment cause both erosion and deposition and exhibit changes in their concentration of solids.Key words: debris flow, Ohya landslide, flow behaviour, observation, initiation zone.


2015 ◽  
Vol 42 (1) ◽  
Author(s):  
Klaus Schraml ◽  
Markus Oismüller ◽  
Markus Stoffel ◽  
Johannes Hübl ◽  
Roland Kaitna

Abstract Debris-flows are infrequent geomorphic phenomena that shape steep valleys and can repre-sent a severe hazard for human settlements and infrastructure. In this study, a debris-flow event chro-nology has been derived at the regional scale within the Gesäuse National Park (Styria, Austria) using dendrogeomorphic techniques. Sediment sources and deposition areas were mapped by combined field investigation and aerial photography using an Unmanned Aerial Vehicle (UAV). Through the analysis of 384 trees, a total of 47 debris-flows occurring in 19 years between AD 1903 and 2008 were identified in five adjacent gullies. Our results highlight the local variability of debris-flow activi-ty as a result of local thunderstorms and the variable availability of sediment sources.


2020 ◽  
Author(s):  
Richard Guthrie ◽  
Andrew Befus

Abstract. Credible models of landslide runout are a critical component of hazard and risk analysis in the mountainous regions worldwide. Hazard analysis benefits enormously from the number of available landslide runout models that can recreate events and provide key insights into the nature of landsliding phenomena. Regional models that are easily employed, however, remain a rarity. For debris flows and debris avalanches, where the impacts may occur some distance from the source, there remains a need for a practical, predictive model that can be applied at the regional scale. We present, herein, an agent-based simulation for debris flows and debris avalanches called LABS. A fully predictive model, LABS employs autonomous sub-routines, or agents, that act on an underlying DEM using a set of probabilistic rules for scour, deposition, path selection, and spreading behavior. Relying on observations of aggregate debris flow behavior, LABS predicts landslide runout, area, volume, and depth along the landslide path. The results can be analyzed within the program or exported in a variety of useful formats for further analysis. A key feature of LABS is that it requires minimal input data, relying primarily on a 5 m DEM and user defined initiation zones, and yet appears to produce realistic results. We demonstrate the applicability of LABS using two very different case studies from distinct geologic, geomorphic, and climatic settings. The first case study considers sediment production from the steep slopes of Papua, the island province of Indonesia; the second considers landslide runout as it affects a community on Vancouver Island off the west coast of Canada. We show how LABS works, how it performs compared to real world examples, what kinds of problems it can solve, and how the outputs compare to historical studies. Finally, we discuss its limitations and its intended use as a predictive regional landslide runout tool. LABS is freely available to not for profit groups including universities, NGOs and government organizations.


2004 ◽  
Vol 45 (3) ◽  
pp. 295-311 ◽  
Author(s):  
Paola Revellino ◽  
Oldrich Hungr ◽  
Francesco M. Guadagno ◽  
Stephen G. Evans

2010 ◽  
Vol 10 (11) ◽  
pp. 2379-2390 ◽  
Author(s):  
J. Blahut ◽  
P. Horton ◽  
S. Sterlacchini ◽  
M. Jaboyedoff

Abstract. Debris flow hazard modelling at medium (regional) scale has been subject of various studies in recent years. In this study, hazard zonation was carried out, incorporating information about debris flow initiation probability (spatial and temporal), and the delimitation of the potential runout areas. Debris flow hazard zonation was carried out in the area of the Consortium of Mountain Municipalities of Valtellina di Tirano (Central Alps, Italy). The complexity of the phenomenon, the scale of the study, the variability of local conditioning factors, and the lacking data limited the use of process-based models for the runout zone delimitation. Firstly, a map of hazard initiation probabilities was prepared for the study area, based on the available susceptibility zoning information, and the analysis of two sets of aerial photographs for the temporal probability estimation. Afterwards, the hazard initiation map was used as one of the inputs for an empirical GIS-based model (Flow-R), developed at the University of Lausanne (Switzerland). An estimation of the debris flow magnitude was neglected as the main aim of the analysis was to prepare a debris flow hazard map at medium scale. A digital elevation model, with a 10 m resolution, was used together with landuse, geology and debris flow hazard initiation maps as inputs of the Flow-R model to restrict potential areas within each hazard initiation probability class to locations where debris flows are most likely to initiate. Afterwards, runout areas were calculated using multiple flow direction and energy based algorithms. Maximum probable runout zones were calibrated using documented past events and aerial photographs. Finally, two debris flow hazard maps were prepared. The first simply delimits five hazard zones, while the second incorporates the information about debris flow spreading direction probabilities, showing areas more likely to be affected by future debris flows. Limitations of the modelling arise mainly from the models applied and analysis scale, which are neglecting local controlling factors of debris flow hazard. The presented approach of debris flow hazard analysis, associating automatic detection of the source areas and a simple assessment of the debris flow spreading, provided results for consequent hazard and risk studies. However, for the validation and transferability of the parameters and results to other study areas, more testing is needed.


Water ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2274
Author(s):  
Guido Leone ◽  
Pasquale Clemente ◽  
Libera Esposito ◽  
Francesco Fiorillo

Debris flows that have occurred in the area of San Martino Valle Caudina (Campania, Southern Italy) are described by geomorphological and hydrological analyses, focusing on the recent event of December 2019. This area can be considered a key example for studying debris-flow phenomena involving the pyroclastic mantle that covers the karstified bedrock along steep slopes. A hydrological analysis of the time series of the maximum annual rainfall, of durations of 1, 3, 6, 12 and 24 h, was carried out based on a new approach to assess rainstorm magnitude. It was quantified by measuring the deviation of the rainfall intensity from the normal conditions, within a specified time period. As the time series of annual maxima are typically skewed, a preliminary transformation is needed to normalize the distribution; to obtain the Z-value of the standard normal distribution, with mean µ = 0 and standard deviation σ = 1, different probability distribution functions were fitted to the actual data. A specific boxplot was used, with box width Z = ±1 and whiskers length Z = ±2. The deviations from these values provide the performance of the distribution fits. For the normalized time series, the rates shown by the trends and relative significance were investigated for the available time series of 11 rain gauges covering the Western–Central Campania region. The most critical condition for the debris-flow initiation appears to occur when a severe or extreme rainfall has a duration ≥ 12 h. The trend analysis did not detect statistically significant increases in the intensity of the rainfall of duration ≥ 6 h.


Sign in / Sign up

Export Citation Format

Share Document