Ozone super recovery cancelled in the Antarctic upper stratosphere

Author(s):  
Ville Maliniemi ◽  
Pavle Arsenovic ◽  
Hilde Nesse Tyssøy ◽  
Christine Smith-Johnsen ◽  
Daniel R. Marsh

<p>Ozone is expected to fully recover from the CFC-era by the end of the 21st century. Furthermore, because of the anthropogenic climate change, cooler stratosphere accelerates the ozone production and is projected to lead to a super recovery. We investigate the ozone distribution over the 21st century with four different future scenarios using simulations of the Whole Atmosphere Community Climate Model (WACCM). At the end of the 21st century, higher polar ozone levels than pre CFC-era are obtained in scenarios that have highest atmospheric radiative forcing. This is true in the Arctic stratosphere and the Antarctic lower stratosphere. The Antarctic upper stratosphere forms an exception, where different scenarios have similar level of ozone during winter. This results from excess nitrogen oxides (NOx) descending from above in stronger future scenarios. NOx is formed by energetic electron precipitation (EEP) in the thermosphere and the upper mesosphere, and descends faster through the mesosphere in stronger scenarios. This indicates that the EEP indirect effect will be important factor for the future Antarctic ozone evolution, and is potentially able to prevent the super recovery in the upper stratosphere.</p>

2021 ◽  
Author(s):  
Ville Maliniemi ◽  
Hilde Nesse Tyssøy ◽  
Christine Smith-Johnsen ◽  
Pavle Arsenovic ◽  
Daniel R. Marsh

Abstract. Ozone is expected to fully recover from the CFC-era by the end of the 21st century. Furthermore, because of anthropogenic climate change, a cooler stratosphere accelerates ozone production and is projected to lead to a super recovery of ozone. We investigate the ozone distribution over the 21st century with four different future scenarios using simulations of the Whole Atmosphere Community Climate Model (WACCM). At the end of the 21st century, equatorial upper startosphere has roughly 0.5 to 1.0 parts per million more ozone in scenario with the highest greenhouse gas emissions compared to conservative scenario. Polar ozone levels exceed those in the pre CFC-era in scenarios that have the highest greenhouse gas emissions. This is true in the Arctic stratosphere and the Antarctic lower stratosphere. The Antarctic upper stratosphere is an exception, where different scenarios all have similar levels of ozone during winter, which do not exceed pre-CFC levels. Our results show that this is due to excess nitrogen oxides (NOx) descending from above in the stronger scenarios of greenhouse gas emissions. NOx is formed by energetic electron precipitation (EEP) in the thermosphere and the upper mesosphere, and descends faster through the mesosphere in stronger scenarios. This indicates that the EEP indirect effect will be important factor for the future Antarctic ozone evolution, and could potentially prevent a super recovery of ozone in the upper stratosphere.


2021 ◽  
Vol 21 (14) ◽  
pp. 11041-11052
Author(s):  
Ville Maliniemi ◽  
Hilde Nesse Tyssøy ◽  
Christine Smith-Johnsen ◽  
Pavle Arsenovic ◽  
Daniel R. Marsh

Abstract. Ozone is expected to fully recover from the chlorofluorocarbon (CFC) era by the end of the 21st century. Furthermore, because of anthropogenic climate change, a cooler stratosphere decelerates ozone loss reactions and is projected to lead to a super recovery of ozone. We investigate the ozone distribution over the 21st century with four different future scenarios using simulations of the Whole Atmosphere Community Climate Model (WACCM). At the end of the 21st century, the equatorial upper stratosphere has roughly 0.5 to 1.0 ppm more ozone in the scenario with the highest greenhouse gas emissions compared to the conservative scenario. Polar ozone levels exceed those in the pre-CFC era in scenarios that have the highest greenhouse gas emissions. This is true in the Arctic stratosphere and the Antarctic lower stratosphere. The Antarctic upper stratosphere is an exception, where different scenarios all have similar levels of ozone during winter, which do not exceed pre-CFC levels. Our results show that this is due to excess nitrogen oxides (NOx) descending faster from above in the stronger scenarios of greenhouse gas emissions. NOx in the polar thermosphere and upper mesosphere is mainly produced by energetic electron precipitation (EEP) and partly by solar UV via transport from low latitudes. Our results indicate that the thermospheric/upper mesospheric NOx will be important factor for the future Antarctic ozone evolution and could potentially prevent a super recovery of ozone in the upper stratosphere.


2013 ◽  
Vol 13 (8) ◽  
pp. 4413-4427 ◽  
Author(s):  
J. M. Siddaway ◽  
S. V. Petelina ◽  
D. J. Karoly ◽  
A. R. Klekociuk ◽  
R. J. Dargaville

Abstract. Chemistry-Climate Model Validation phase 2 (CCMVal-2) model simulations are used to analyze Antarctic ozone increases in 2000–2100 during local spring and early summer, both vertically integrated and at several pressure levels in the lower stratosphere. Multi-model median trends of monthly zonal mean total ozone column (TOC), ozone volume mixing ratio (VMR), wind speed and temperature poleward of 60° S are investigated. Median values are used to account for large variability in models, and the associated uncertainty is calculated using a bootstrapping technique. According to the trend derived from the twelve CCMVal-2 models selected, Antarctic TOC will not return to a 1965 baseline, an average of 1960–1969 values, by the end of the 21st century in September–November, but will return in ~2080 in December. The speed of December ozone depletion before 2000 was slower compared to spring months, and thus the decadal rate of December TOC increase after 2000 is also slower. Projected trends in December ozone VMR at 20–100 hPa show a much slower rate of ozone recovery, particularly at 50–70 hPa, than for spring months. Trends in temperature and winds at 20–150 hPa are also analyzed in order to attribute the projected slow increase of December ozone and to investigate future changes in the Antarctic atmosphere in general, including some aspects of the polar vortex breakup.


1990 ◽  
Vol 68 (10) ◽  
pp. 1113-1121
Author(s):  
W. F. J. Evans ◽  
A. E. Walker ◽  
F. E. Bunn

The presence of a thinned area or craterlike feature in the Arctic polar ozone layer during March, 1986 has been reported previously (Can. J. Phys. 67, 161 (1989)). In this paper the morphology of the reappearance of the crater from January to March, 1989 is described. It appeared over northern Europe in late January and moved over western Canada in late February. The minimum value of ozone in the crater floor had fallen from 300 DU (1 Dobson unit (DU) = 0.01 mm) in 1979 to a new low of less than 200 DU in 1989, which is similar to the thinned total ozone columns observed within the Antarctic ozone hole. Analysis of the available total ozone mapping spectrometer ozone measurements indicates that the crater could be explained by a combination of two mechanisms; a chemical process, which depleted the ozone concentrations at altitudes in the 14–22 km region, and a transport process, which shifted the altitude distribution of ozone upwards such as a vertical circulation cell. Although the Arctic ozone crater is similar in several aspects to the Antarctic ozone hole, there remain several differences; the issue is whether the crater and the hole are manifestations of the same phenomenon. We consider that the Arctic ozone crater is mainly produced by dynamic redistribution driven by tropospheric circulation features.


2020 ◽  
Author(s):  
Ville Maliniemi ◽  
Daniel R. Marsh ◽  
Hilde Nesse Tyssøy ◽  
Christine Smith-Johnsen

<p>Energetic electron precipitation (EEP) is an important source of polar nitrogen oxides (NOx) in the upper atmosphere. During winter, mesospheric NOx has a long chemical lifetime and is transported to the stratosphere by the mean meridional circulation. Climate change is expected to accelerate this circulation and therefore increase polar mesospheric descent rates. We investigate the southern hemispheric polar NOx distribution during the 21<sup>st</sup> century under a variety of future scenarios using simulations of the Whole Atmosphere Community Climate Model (WACCM). Each future scenario has the same moderate variable solar activity scenario, where EEP activity is lower than during the 20<sup>th</sup> century. We simulate stronger polar mesospheric descent in all future scenarios that increase the atmospheric radiative forcing. By the end of 21<sup>st</sup> century polar NOx in the upper stratosphere is significantly enhanced in two future scenarios with the largest increase in radiative forcing. This indicates that the ozone depleting NOx cycle will become more important in the future, especially if stratospheric chlorine species decline. Thus, EEP-related atmospheric effects may become more prominent in the future.</p>


1989 ◽  
Vol 67 (2-3) ◽  
pp. 161-165 ◽  
Author(s):  
W. F. J. Evans

A craterlike structure or "hole" in the Arctic polar ozone layer during March 1986 has been observed in the total ozone images from the total ozone mapping spectrometer instrument on the NIMBUS 7 satellite. Observations from ozonesondes in the vicinity of this crater show a depleted region in the altitude profile from 10 to 16 km. This altitude region of depleted ozone is similar to the depleted layer observed from 12 to 18 km within the Antarctic ozone hole. A comparison has been made between the ozone altitude profile outside the crater at Resolute, N.W.T., Canada (75°N), and the ozone altitude profile inside the crater at Lindenberg, German Democratic Republic, (55°N). The difference in these profiles demonstrates that the crater is due to a process that has altered the altitude distribution of ozone in the 10–16 km region. This depletion could be attributed to either a vertical circulation or a chemical-depletion process.


2016 ◽  
Vol 73 (6) ◽  
pp. 2509-2528 ◽  
Author(s):  
Sandro W. Lubis ◽  
Nour-Eddine Omrani ◽  
Katja Matthes ◽  
Sebastian Wahl

Abstract There is evidence that the strengthened stratospheric westerlies arising from the Antarctic ozone hole–induced cooling cause a polar mesospheric warming and a subsequent cooling in the lower thermosphere. While previous studies focus on the role of nonresolved (gravity) wave drag filtering, here the role of resolved (planetary) wave drag and radiative forcing on the Antarctic mesosphere and lower thermosphere (MLT) is explored in detail. Using simulations with NCAR’s Community Earth System Model, version 1 (Whole Atmosphere Community Climate Model) [CESM1(WACCM)], it is found that in late spring and early summer the anomalous polar mesospheric warming induced by easterly nonresolved wave drag is dampened by anomalous dynamical cooling induced by westerly resolved wave drag. This resolved wave drag is attributed to planetary-scale wave (k = 1–3) activity, which is generated in situ as a result of increased instability of the summer mesospheric easterly jet induced by the ozone hole. On the other hand, the anomalous cooling in the polar lower thermosphere induced by westerly nonresolved wave drag is enhanced by anomalous dynamical cooling due to westerly resolved wave drag. In addition, radiative effects from increased greenhouse gases during the ozone hole period contribute partially to the cooling in the polar lower thermosphere. The polar MLT temperature response to the Antarctic ozone hole is, through thermal wind balance, accompanied by the downward migration of anomalous zonal-mean wind from the lower thermosphere to the stratopause. The results highlight that a proper accounting of both dynamical and radiative effects is required in order to correctly attribute the causes of the polar MLT response to the Antarctic ozone hole.


2014 ◽  
Vol 14 (19) ◽  
pp. 10431-10438 ◽  
Author(s):  
X. Yang ◽  
N. L. Abraham ◽  
A. T. Archibald ◽  
P. Braesicke ◽  
J. Keeble ◽  
...  

Abstract. Naturally produced very short-lived substances (VSLS) account for almost a quarter of the current stratospheric inorganic bromine, Bry. Following VSLS oxidation, bromine radicals (Br and BrO) can catalytically destroy ozone. The extent to which possible increases in surface emissions or transport of these VSLS bromocarbons to the stratosphere could counteract the effect of halogen reductions under the Montreal Protocol is an important policy question. Here, by using a chemistry–climate model, UM-UKCA, we investigate the impact of a hypothetical doubling (an increase of 5 ppt Bry) of VSLS bromocarbons on ozone and how the resulting ozone changes depend on the background concentrations of chlorine and bromine. Our model experiments indicate that for the 5 ppt increase in Bry from VSLS, the ozone decrease in the lowermost stratosphere of the Southern Hemisphere (SH) may reach up to 10% in the annual mean; the ozone decrease in the Northern Hemisphere (NH) is smaller (4–6%). The largest impact on the ozone column is found in the Antarctic spring. There is a significantly larger ozone decrease following the doubling of the VSLS burden under a high stratospheric chlorine background than under a low chlorine background, indicating the importance of the inter-halogen reactions. For example, the decline in the high-latitude, lower-stratospheric ozone concentration as a function of Bry is higher by about 30–40% when stratospheric Cly is ~ 3 ppb (present day), compared with Cly of ~ 0.8 ppb (a pre-industrial or projected future situation). Bromine will play an important role in the future ozone layer. However, even if bromine levels from natural VSLS were to increase significantly later this century, changes in the concentration of ozone will likely be dominated by the decrease in anthropogenic chlorine. Our calculation suggests that for a 5 ppt increase in Bry from VSLS, the Antarctic ozone hole recovery date could be delayed by approximately 6–8 years, depending on Cly levels.


2018 ◽  
Vol 18 (9) ◽  
pp. 6121-6139 ◽  
Author(s):  
Fernando Iglesias-Suarez ◽  
Douglas E. Kinnison ◽  
Alexandru Rap ◽  
Amanda C. Maycock ◽  
Oliver Wild ◽  
...  

Abstract. Over the 21st century changes in both tropospheric and stratospheric ozone are likely to have important consequences for the Earth's radiative balance. In this study, we investigate the radiative forcing from future ozone changes using the Community Earth System Model (CESM1), with the Whole Atmosphere Community Climate Model (WACCM), and including fully coupled radiation and chemistry schemes. Using year 2100 conditions from the Representative Concentration Pathway 8.5 (RCP8.5) scenario, we quantify the individual contributions to ozone radiative forcing of (1) climate change, (2) reduced concentrations of ozone depleting substances (ODSs), and (3) methane increases. We calculate future ozone radiative forcings and their standard error (SE; associated with inter-annual variability of ozone) relative to year 2000 of (1) 33 ± 104 m Wm−2, (2) 163 ± 109 m Wm−2, and (3) 238 ± 113 m Wm−2 due to climate change, ODSs, and methane, respectively. Our best estimate of net ozone forcing in this set of simulations is 430 ± 130 m Wm−2 relative to year 2000 and 760 ± 230 m Wm−2 relative to year 1750, with the 95 % confidence interval given by ±30 %. We find that the overall long-term tropospheric ozone forcing from methane chemistry–climate feedbacks related to OH and methane lifetime is relatively small (46 m Wm−2). Ozone radiative forcing associated with climate change and stratospheric ozone recovery are robust with regard to background climate conditions, even though the ozone response is sensitive to both changes in atmospheric composition and climate. Changes in stratospheric-produced ozone account for ∼ 50 % of the overall radiative forcing for the 2000–2100 period in this set of simulations, highlighting the key role of the stratosphere in determining future ozone radiative forcing.


2021 ◽  
Author(s):  
Anthony Siahaan

<p>A UKESM climate model which is coupled annually to the BISICLES ice sheet model to enable a two way interactions in Antarctica has been developed <br>and run through a small ensemble of four SSP1-1.9 & SSP5-8.5 scenario members. Under the extreme anthropogenic forcing, all the initial condition <br>ensemble members develop strong melting under the cold & large Ross and Filchner-Ronne ice-shelves, where it starts after the first half of simulation <br>period for the former and in the last decade of the run for the latter. Despite that, during the 85 years timescale of these scenario runs, the stronger radiative forcing has positive effects on the ice-sheet mass gain through increasing precipitation on grounded ice regions which offsets the impact of basal melting in ice discharge across the grounding lines.</p>


Sign in / Sign up

Export Citation Format

Share Document