The impact of drought on tree growth in Mediterranean sites

Author(s):  
Giovanna Battipaglia ◽  
Francesco Niccoli ◽  
Arturo Pacheco-Solana

<p>Climate-induced forest mortality is a critical issue in the Mediterranean basin, with major consequences for the functioning of these key ecosystems. Indeed, in Mediterranean ecosystems, where water stress is already the most limiting factor for tree performance, climatic changes are expected to entail an increase in water deficit. In this context, annual growth rings can provide short- (e.g., years) and long-term (e.g., decades) information on how trees respond to drought events. With climate change, <em>Pinus pinaster</em> and <em>Pinus pinea</em> L. are expected to reduce their distribution range in the region, being displaced at low altitudes by more drought tolerant taxa such as sub Mediterranean <em>Quercus</em> spp.</p><p>This study aims was to assess the physiological response of <em>Pinus</em> and <em>Quercus</em> species growing in the Vesuvio National park, located in Southern Italy and where an increase of temperature and drought events has been recorded in the recent years. Our preliminary results underlined the importance of temperature on the tree ring width of all the analyses species. The high temperatures can cause a change in the constant kinetics of the RuBisCo, leading to a consequent decrease in carboxylation rate and thus to a reduction in tree growth. On the other hand, also precipitation seemed to affect the growth of the sampled trees: indeed, in all the chronologies a reduction in growth was found after particular dry years: for example, the low rainfall in 1999 (455 mm/year) determined a drastic decline in growth in 2000 in all the species. In addition to the climatic factors, competition can also play an important role in the growth rate: dendrochronological analyzes have highlighted how stand specific properties (i.e. density, structure and composition) can influence individual tree responses to drought events. The knowledge of those researches should be integrated into sustainable forest management strategies to minimize the potential impacts of climate change on forest ecosystems.</p>

2021 ◽  
Author(s):  
Marina Fonti ◽  
Olga Churakova (Sidorova) ◽  
Ivan Tychkov

<p>Air temperature increase and change in precipitation regime have a significant impact on northern forests leading to the ambiguous consequences due to the complex interaction between the ecosystem plant components and permafrost. One of the major interests in such circumstances is to understand how tree growth of the main forest species of the Siberian North will change under altering climatic conditions. In this work, we applied the process-based Vaganov-Shashkin model (VS - model) of tree growth in order to estimate the daily impact of climatic conditions on tree-ring width of larch trees in northeastern Yakutia (Larix cajanderi Mayr.) and eastern Taimyr (Larix gmelinii Rupr. (Rupr.) for the period 1956-2003, and to determine the extent to which the interaction of climatic factors (temperature and precipitation) is reflected in the tree-ring anatomical structure. Despite the location of the study sites in the harsh conditions of the north, and temperature as the main limiting factor, it was possible to identify a period during the growing season when tree growth was limited by lack of soil moisture. The application of the VS-model for the studied regions allowed establishing in which period of the growing season the water stress is most often manifest itself, and how phenological phases (beginning, cessation, and duration of larch growth) vary among the years.</p><p>The research was funded by RFBR, Krasnoyarsk Territory and Krasnoyarsk Regional Fund of Science, project number 20-44-240001 and by the Russian Ministry of Science and Higher Education (projects FSRZ-2020-0010).</p>


Forests ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1215
Author(s):  
Yuting Fan ◽  
Huaming Shang ◽  
Shulong Yu ◽  
Ye Wu ◽  
Qian Li

The juniper tree forest is a critical component of the carbon, water, and energy cycles of Tajikistan. However, to date, long-term information about tree-ring isotopes is limited in this region. Here, we developed tree-ring width (TRW) and tree-ring 13C chronologies for juniper trees (Juniperus seravschanica (Juniperus excelsa subsp.polycarpos (K. Koch) Takht.) and Juniperus turkestanica (Juniperus pseudosabina Fisch. & C. A. Mey)) and investigated their dendroclimatic signals in the northwest of the Pamir-Alay (NWPA) mountains in Tajikistan. Tree-ring ∆13C and TRW of juniper presented different sensitivities to monthly precipitation. Moreover, ∆13C in juniper showed consistently significant relationships with climatic factors in larger seasonal windows than TRW did. Dendroclimatological analysis demonstrates that precipitation has significant effects on tree growth and isotope enrichment. Late summer to early winter temperature is one limiting factor for the TRW chronologies, but previous spring, summer, and autumn temperature and precipitation from the previous July to the current May were the dominant climatic factors accounting for inter-annual variations in the ∆13C chronologies. This verified that the multi tree-ring parameters of juniper in Tajikistan are a promising tool for investigating inter-annual climate variations. Furthermore, the stable carbon isotopes of tree rings have proven to be powerful evidence of climatic signals. The moisture-sensitive tree-ring isotope provides opportunities for complex investigations of changes in atmospheric circulation patterns and timing of seasonal rainfall. Our results highlight the need for more detailed studies of tree growth responses to changing climate and tree-ring isotopes to understand source water variations (especially baseflow) of the juniper tree forest.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 172
Author(s):  
Yuan Xu ◽  
Jieming Chou ◽  
Fan Yang ◽  
Mingyang Sun ◽  
Weixing Zhao ◽  
...  

Quantitatively assessing the spatial divergence of the sensitivity of crop yield to climate change is of great significance for reducing the climate change risk to food production. We use socio-economic and climatic data from 1981 to 2015 to examine how climate variability led to variation in yield, as simulated by an economy–climate model (C-D-C). The sensitivity of crop yield to the impact of climate change refers to the change in yield caused by changing climatic factors under the condition of constant non-climatic factors. An ‘output elasticity of comprehensive climate factor (CCF)’ approach determines the sensitivity, using the yields per hectare for grain, rice, wheat and maize in China’s main grain-producing areas as a case study. The results show that the CCF has a negative trend at a rate of −0.84/(10a) in the North region, while a positive trend of 0.79/(10a) is observed for the South region. Climate change promotes the ensemble increase in yields, and the contribution of agricultural labor force and total mechanical power to yields are greater, indicating that the yield in major grain-producing areas mainly depends on labor resources and the level of mechanization. However, the sensitivities to climate change of different crop yields to climate change present obvious regional differences: the sensitivity to climate change of the yield per hectare for maize in the North region was stronger than that in the South region. Therefore, the increase in the yield per hectare for maize in the North region due to the positive impacts of climate change was greater than that in the South region. In contrast, the sensitivity to climate change of the yield per hectare for rice in the South region was stronger than that in the North region. Furthermore, the sensitivity to climate change of maize per hectare yield was stronger than that of rice and wheat in the North region, and that of rice was the highest of the three crop yields in the South region. Finally, the economy–climate sensitivity zones of different crops were determined by the output elasticity of the CCF to help adapt to climate change and prevent food production risks.


2015 ◽  
Vol 166 (6) ◽  
pp. 389-398 ◽  
Author(s):  
Brigitte Rohner ◽  
Esther Thürig

Development of climate-dependent growth functions for the scenario model “Massimo” Tree growth is substantially influenced by climatic factors. In the face of climate change, climate effects should therefore be included in estimations of Switzerland's future forest productivity. In order to include climate effects in the growth functions of the “Massimo” model, which is typically applied to project forest resources in Switzerland, we statistically modelled climate effects on tree growth representatively for Switzerland by simultaneously considering further growth-influencing factors. First, we used tree ring data to evaluate how climate variables should be defined. This analyses showed that for modelling multi-year tree growth we should use averages of whole-year variables. Second, we fitted nonlinear mixed-effects models separately for the main tree species to individual-tree growth data from the Swiss National Forest Inventory. In these models, we combined climate variables defined according to the results of the tree ring study with various further variables that characterize sites, stands and individual trees. The quantified effects were generally plausible and explained convincingly the physiological differences between the species. The statistical growth models for the main tree species will now be included in the forest scenario model “Massimo”. This will allow for founded analyses of scenarios which assume changing climatic conditions.


2016 ◽  
Vol 44 (1) ◽  
pp. 66-73 ◽  
Author(s):  
EMMA L. GREEN ◽  
FELIX EIGENBROD ◽  
KATE SCHRECKENBERG ◽  
SIMON WILLCOCK

SUMMARYMiombo woodlands supply ecosystem services to support livelihoods in southern Africa, however, rapid deforestation has necessitated greater knowledge of tree growth and off-take rates to understand the sustainability of miombo exploitation. We established 48 tree inventory plots within four villages in southern Malawi, interviewed representatives in these same villages about tree management practices and investigated the impact of climate on vegetation dynamics in the region using the ecosystem modelling framework LPJ-GUESS. Combining our data with the forest yield model MYRLIN revealed considerable variation in growth rates across different land uses; forested lands showed the highest growth rates (1639 [95% confidence interval 1594–1684] kg ha–1 year–1), followed by settlement areas (1453 [95% confidence interval 1376–1530] kg ha–1 year–1). Based on the modelled MYRLIN results, we found that 50% of the villages had insufficient growth rates to meet estimated off-take. Furthermore, the results from LPJ-GUESS indicated that sustainable off-take approaches zero in drought years. Local people have recognized the unsustainable use of natural resources and have begun planting activities in order to ensure that ecosystem services derived from miombo woodlands are available for future generations. Future models should incorporate the impacts of human disturbance and climatic variation on vegetation dynamics; such models should be used to support the development and implementation of sustainable forest management.


2020 ◽  
Author(s):  
Xuan Liu ◽  
Jason R Rohr ◽  
Xianping Li ◽  
Teng Deng ◽  
Wenhao Li ◽  
...  

Abstract Understanding how alien species assemble is crucial for predicting changes to community structure caused by biological invasions and for directing management strategies for alien species, but patterns and drivers of alien species assemblages remain poorly understood relative to native species. Climate has been suggested as a crucial filter of invasion-driven homogenization of biodiversity. However, it remains unclear which climatic factors drive the assemblage of alien species. Here, we compiled global data at both grid scale (2,653 native and 2,806 current grids with a resolution of 2° × 2°) and administrative scale (271 native and 297 current nations and sub-nations) on the distributions of 361 alien amphibians and reptiles (herpetofauna), the most threatened vertebrate group on the planet. We found that geographical distance, a proxy for natural dispersal barriers, was the dominant variable contributing to alien herpetofaunal assemblage in native ranges. In contrast, climatic factors explained more unique variation in alien herpetofaunal assemblage after than before invasions. This pattern was driven by extremely high temperatures and precipitation seasonality, 2 hallmarks of global climate change, and bilateral trade which can account for the alien assemblage after invasions. Our results indicated that human-assisted species introductions combined with climate change may accelerate the reorganization of global species distributions.


Hydrology ◽  
2019 ◽  
Vol 6 (3) ◽  
pp. 61 ◽  
Author(s):  
Kleoniki Demertzi ◽  
Dimitris Papadimos ◽  
Vassilis Aschonitis ◽  
Dimitris Papamichail

This study proposes a simplistic model for assessing the hydroclimatic vulnerability of lakes/reservoirs (LRs) that preserve their steady-state conditions based on regulated superficial discharge (Qd) out of the LR drainage basin. The model is a modification of the Bracht-Flyr et al. method that was initially proposed for natural lakes in closed basins with no superficial discharge outside the basin (Qd = 0) and under water-limited environmental conditions {mean annual ratio of potential/reference evapotranspiration (ETo) versus rainfall (P) greater than 1}. In the proposed modified approach, an additional Qd function is included. The modified model is applied using as a case study the Oreastiada Lake, which is located inside the Kastoria basin in Greece. Six years of observed data of P, ETo, Qd, and lake topography were used to calibrate the modified model based on the current conditions. The calibrated model was also used to assess the future lake conditions based on the future climatic projections (mean conditions of 2061-2080) derived by 19 general circulation models (GCMs) for three cases of climate change (three cases of Representative Concentration Pathways: RCP2.6, RCP4.5 and RCP8.5). The modified method can be used as a diagnostic tool in water-limited environments for analyzing the superficial discharge changes of LRs under different climatic conditions and to support the design of new management strategies for mitigating the impact of climate change on (a) flooding conditions, (b) hydroelectric production, (c) irrigation/industrial/domestic use and (d) minimum ecological flows to downstream rivers.


2018 ◽  
Vol 40 (2) ◽  
pp. 205
Author(s):  
Xu-Juan Cao ◽  
Qing-Zhu Gao ◽  
Ganjurjav Hasbagan ◽  
Yan Liang ◽  
Wen-Han Li ◽  
...  

Climate change will affect how the Normalised Difference Vegetation Index (NDVI), which is correlated with climate factors, varies in space and over time. The Mongolian Plateau is an arid and semi-arid area, 64% covered by grassland, which is extremely sensitive to climate change. Its climate has shown a warming and drying trend at both annual and seasonal scales. We analysed NDVI and climate variation characteristics and the relationships between them for Mongolian Plateau grasslands from 1981 to 2013. The results showed spatial and temporal differences in the variation of NDVI. Precipitation showed the strongest correlation with NDVI (43% of plateau area correlated with total annual precipitation and 44% with total precipitation in the growing season, from May to September), followed by potential evapotranspiration (27% annual, and 30% growing season), temperature (7% annual, 16% growing season) and cloud cover (10% annual, 12% growing season). These findings confirm that moisture is the most important limiting factor for grassland vegetation growth on the Mongolian Plateau. Changes in land use help to explain variations in NDVI in 40% of the plateau, where no correlation with climate factors was found. Our results indicate that vegetation primary productivity will decrease if warming and drying trends continue but decreases will be less substantial if further warming, predicted as highly likely, is not accompanied by further drying, for which predictions are less certain. Continuing spatial and temporal variability can be expected, including as a result of land use changes.


2019 ◽  
Author(s):  
Louis de Wergifosse ◽  
Frédéric André ◽  
Nicolas Beudez ◽  
François de Coligny ◽  
Hugues Goosse ◽  
...  

Abstract. Climate change affects forest growth in numerous and sometimes opposite ways and the resulting trend is often difficult to predict for a given site. Integrating and structuring the knowledge gained from the monitoring and experimental studies into process-based models is an interesting approach to predict the response of forest ecosystems to climate change. While the first generation of such models operates at stand level, we need now individual-based and spatially-explicit approaches in order to account for structurally complex stands whose importance is increasingly recognized in the changing environment context. Among the climate-sensitive drivers of forest growth, phenology and water availability are often cited as crucial elements. They influence, for example, the length of the vegetation period during which photosynthesis takes place and the stomata opening, which determines the photosynthesis rate. In this paper, we describe the phenology and water balance modules integrated in the tree growth model HETEROFOR and evaluate them on six Belgian sites. More precisely, we assess the ability of the model to reproduce key phenological processes (budburst, leaf development, yellowing and fall) as well as water fluxes. Three variants are used to predict budburst (Uniforc, Unichill and Sequential), which differ regarding the inclusion of chilling and/or forcing periods and the calculation of the coldness or heat accumulation. Among the three, the Sequential approach is the least biased (overestimation of 2.46 days) while Uniforc (chilling not considered) best accounts for the interannual variability (Pearson’s R = 0.68). For the leaf development, yellowing and fall, predictions and observation are in accordance. Regarding the water balance module, the predicted throughfall is also in close agreement with the measurements (Pearson’s R = 0.856, bias = −1.3 %) and the soil water dynamics across the year is well-reproduced for all the study sites (Pearson’s R comprised between 0.893 and 0.950, and bias between −1.81 and −9.33 %). The positive results from the model assessment will allow us to use it reliably in projection studies to evaluate the impact of climate change on tree growth and test how diverse forestry practices can adapt forests to these changes.


2020 ◽  
Vol 12 (17) ◽  
pp. 6992
Author(s):  
Zhuo Wu ◽  
Erfu Dai ◽  
Wenchuan Guan

Subtropical forests face pressure from both rapidly changing climate and increasing harvest activity in southern China. However, the interactive effects of various spatial processes on forests are not well known. The objective of the present study was to answer the question of how forest aboveground biomass (AGB) changes under alternative climate change and harvesting scenarios and to determine whether there will be a tipping point for forest AGB before 2300. Our simulation results show that, although total forest AGB did not reach a tipping point before 2300 under possible climate change and harvesting scenarios, the slope of the total forest AGB showed a decreasing trend around 2100 and 2200. Moderate climate warming was conducive to AGB accumulation, except for in the high emissions Representative Concentration Pathway (RCP8.5) scenario. Our results also indicate that timber harvesting is adaptable to the accumulation of biomass under climate change scenarios. Harvesting intensity was a key variable affecting forest AGB more than harvesting frequency. Our findings will help develop more sustainable forest management strategies that can adapt to potential climate change scenarios, as well as determining the effectiveness of implementing alternative forest harvesting policies.


Sign in / Sign up

Export Citation Format

Share Document