Substorm evolution of the auroral zone boundaries on the dawn and dusk flanks: DMSP and POES/MetOp observations

Author(s):  
Margot Decotte ◽  
Karl M. Laundal ◽  
Spencer Hatch ◽  
Jone Reistad

<p>We present a method for tracking the evolution of the auroral boundaries on the dawn and dusk flanks during magnetospheric substorms by using a combined database of auroral zone boundaries derived from DMSP and POES/MetOp satellite particle measurements. Auroral boundaries can be identified by the Kilcommons et al. (2017) algorithm which use electron energy fluxes from the DMSP spectrometer (SSJ instrument). We show how auroral boundaries may also be obtained from precipitating electron observations from the POES/MetOp Total Energy Detector (TED) instrument by subjecting the TED electron measurements to an algorithm similar to that presented by Kilcommons et al. (2017). Boundaries derived from the two satellite missions are similar, suggesting that the technique for auroral oval boundary identification is physically meaningful.</p>

2004 ◽  
Vol 22 (6) ◽  
pp. 1961-1971 ◽  
Author(s):  
N. Partamies ◽  
P. Janhunen ◽  
K. Kauristie ◽  
S. Mäkinen ◽  
T. Sergienko

Abstract. An inversion method for reconstructing the precipitating electron energy flux from a set of multi-wavelength digital all-sky camera (ASC) images has recently been developed by tomografia. Preliminary tests suggested that the inversion is able to reconstruct the position and energy characteristics of the aurora with reasonable accuracy. This study carries out a thorough testing of the method and a few improvements for its emission physics equations. We compared the precipitating electron energy fluxes as estimated by the inversion method to the energy flux data recorded by the Defense Meteorological Satellite Program (DMSP) satellites during four passes over auroral structures. When the aurorae appear very close to the local zenith, the fluxes inverted from the blue (427.8nm) filtered ASC images or blue and green line (557.7nm) images together give the best agreement with the measured flux values. The fluxes inverted from green line images alone are clearly larger than the measured ones. Closer to the horizon the quality of the inversion results from blue images deteriorate to the level of the ones from green images. In addition to the satellite data, the precipitating electron energy fluxes were estimated from the electron density measurements by the EISCAT Svalbard Radar (ESR). These energy flux values were compared to the ones of the inversion method applied to over 100 ASC images recorded at the nearby ASC station in Longyearbyen. The energy fluxes deduced from these two types of data are in general of the same order of magnitude. In 35% of all of the blue and green image inversions the relative errors were less than 50% and in 90% of the blue and green image inversions less than 100%. This kind of systematic testing of the inversion method is the first step toward using all-sky camera images in the way in which global UV images have recently been used to estimate the energy fluxes. The advantages of ASCs, compared to the space-born imagers, are their low cost, good spatial resolution and the possibility of continuous, long-term monitoring of the auroral oval from a fixed position.


2012 ◽  
Vol 3 (1) ◽  
pp. 1-31 ◽  
Author(s):  
Y. I. Feldstein ◽  
L. I. Gromova ◽  
M. Förster ◽  
A. E. Levitin

Abstract. The conception of spiral shaped precipitation regions, where solar corpuscles penetrate the upper atmosphere, was introduced into geophysics by C. Störmer and K. Birkeland at the beginning of the last century. Later, in the course of the XX-th century, spiral distributions were disclosed and studied in various geophysical phenomena. Most attention was devoted to spiral shapes in the analysis of regularities pertaining to the geomagnetic activity and auroras. We review the historical succession of perceptions about the number and positions of spiral shapes, that characterize the spatial-temporal distribution of magnetic disturbances. We describe the processes in the upper atmosphere, which are responsible for the appearance of spiral patterns. We considered the zones of maximal aurora frequency and of maximal particle precipitation intensity, as offered in the literature, in their connection with the spirals. We discuss the current system model, that is closely related to the spirals and that appears to be the source for geomagnetic field variations during magnetospheric substorms and storms. The currents in ionosphere and magnetosphere constitute together with field-aligned (along the geomagnetic field lines) currents (FACs) a common 3-D current system. At ionospheric heights, the westward and eastward electrojets represent characteristic elements of the current system. The westward electrojet covers the longitudinal range from the morning to the evening hours, while the eastward electrojet ranges from afternoon to near-midnight hours. The polar electrojet is positioned in the dayside sector at cusp latitudes. All these electrojets map along the magnetic field lines to certain plasma structures in the near-Earth space. The first spiral distribution of auroras was found based on observations in Antarctica for the nighttime-evening sector (N-spiral), and later in the nighttime-evening (N-spiral) and morning (M-spiral) sectors both in the Northern and Southern Hemispheres. The N- and M-spirals drawn in polar coordinates form an oval, along which one observes most often auroras in the zenith together with a westward electrojet. The nature of spiral distributions in geomagnetic field variations was unabmibuously interpreted after the discovery of the spiral's existence in the auroras had been established and this caused a change from the paradigm of the auroral zone to the paradigm of the auroral oval. Zenith forms of auroras are found within the boundaries of the auroral oval. The oval is therefore the region of most frequent precipitations of corpuscular fluxes with auroral energy, where anomalous geophysical phenomena occur most often and with maximum intensity. S. Chapman and L. Harang identified the existence of a discontinuity at auroral zone latitudes (Φ ∼ 67°) around midnight between the westward and eastward electrojets, that is now known as the Harang discontinuity. After the discovery of the auroral oval and the position of the westward electrojet along the oval, it turned out, that there is no discontinuity at a fixed latitude between the opposite electrojets, but rather a gap, the latitude of which varies smoothly between Φ ∼ 67° at midnight and Φ ∼ 73° at 20:00 MLT. In this respect the term ''Harang discontinuity'' represents no intrinsic phenomenon, because the westward electrojet does not experience any disruption in the midnight sector but continues without breaks from dawn to dusk hours.


2015 ◽  
Vol 6 (1) ◽  
pp. 23-43 ◽  
Author(s):  
S.-I. Akasofu

Abstract. Solar–terrestrial physics, like any other scientific field, has evolved and developed by replacing older theories with newer theories. Unfortunately, each generation of young researchers tends to learn naturally only the latest, and perhaps the most popular theory and believes that it is the only useful one to pursue. Therefore, they do not necessarily realize that in the past the theory they chose had struggled to reach its presently acceptable state, and that eventually it might be replaced with a new theory. Two generations of scientists or in some subjects even more generations tend to be guided by one particular idea or theory. Thus, among us (namely, one or two generations) a high degree of agreement occurs, both on the theoretical assumptions and on the problem to be solved within the framework provided by the theory. Such an idea or theory was termed paradigm by Kuhn (1970). The purpose of this article is to describe several examples of the transition of paradigms and ideas in the subjects of solar–terrestrial physics. The examples are subjects that experienced a paradigm change after prevailing in the field for a few generations and also some that are perhaps on the verge of the transition. The chosen subjects are (1) Stormer's single particle theory to Chapman's plasma theory (1907–1963), (2) the auroral zone to the auroral oval (1860–1971), (3) the closed to open magnetosphere (1931–1971), (4) the current system controversies (1918–1963) and (1964–present), (5) the fixed pattern concept to the concept of auroral/magnetospheric substorms (1935–1982), (6) the importance of the interplanetary magnetic field (IMF) in the development of geomagnetic storms (1905–1966), (7) the ring current: solar wind protons to oxygen ions from the ionosphere (1933–1977), (8) the storm–substorm controversy (1963–present), (9) substorm onset (1964-present), (10) solar flares (1958–present) and (11) sunspots (1961–present).


2004 ◽  
Vol 22 (1) ◽  
pp. 63-72 ◽  
Author(s):  
S. V. Apatenkov ◽  
V. A. Sergeev ◽  
R. Pirjola ◽  
A. Viljanen

Abstract. To learn about the geometry and sources of the ionospheric current systems which generate strong geomagnetically induced currents, we categorize differential equivalent current systems (DEC) for events with strong dB/dt by decomposing them into the contributions of electrojet-type and vortex-type elementary systems. By solving the inverse problem we obtain amplitudes and locations of these elementary current systems. One-minute differences of the geomagnetic field values at the IMAGE magnetometer network in 1996–2000 are analysed to study the spatial distributions of large dB/dt events. The relative contributions of the two components are evaluated. In particular, we found that the majority of the strongest dB/dt events (100–1000nT/min) appear to be produced by the vortex-type current structures and most of them occur in the morning LT hours, probably caused by the Ps6 pulsation events associated with auroral omega structures. For strong dB/dt events the solar wind parameters are shifted toward strong (tens nT) southward IMF, enhanced velocity and dynamic pressure, in order for the main phase of the magnetic storms to occur. Although these events appear mostly during magnetic storms when the auroral oval greatly expands, the area of large dB/dt stays in the middle part of the auroral zone; therefore, it is connected to the processes taking part in the middle of the magnetosphere rather than in its innermost region populated by the ring current. Key words. Geomagnetism and paleomagnetism (rapid time variations) – Ionosphere (auroral ionosphere; ionospheric disturbances)


1981 ◽  
Vol 21 (2) ◽  
pp. 223-230 ◽  
Author(s):  
W. M. Frank ◽  
G. D. Emmitt

2005 ◽  
Vol 23 (4) ◽  
pp. 1371-1390 ◽  
Author(s):  
M. L. Parkinson ◽  
M. Pinnock ◽  
J. A. Wild ◽  
M. Lester ◽  
T. K. Yeoman ◽  
...  

Abstract. Earthward injections of energetic ions and electrons mark the onset of magnetospheric substorms. In the inner magnetosphere (L4), the energetic ions drift westward and the electrons eastward, thereby enhancing the equatorial ring current. Wave-particle interactions can accelerate these particles to radiation belt energies. The ions are injected slightly closer to Earth in the pre-midnight sector, leading to the formation of a radial polarisation field in the inner magnetosphere. This maps to a poleward electric field just equatorward of the auroral oval in the ionosphere. The poleward electric field is subsequently amplified by ionospheric feedback, thereby producing auroral westward flow channels (AWFCs). In terms of electric field strength, AWFCs are the strongest manifestation of substorms in the ionosphere. Because geomagnetic flux tubes are essentially equi-potentials, similar AWFC signatures should be observed simultaneously in the Northern and Southern Hemispheres. Here we present magnetically conjugate SuperDARN radar observations of AWFC activity observed in the pre-midnight sector during two substorm intervals including multiple onsets during the evening of 30 November 2002. The Northern Hemisphere observations were made with the Japanese radar located at King Salmon, Alaska (57, and the Southern Hemisphere observations with the Tasman International Geospace Environment Radar (TIGER) located at Bruny Island, Tasmania (55. LANL geosynchronous satellite observations of energetic ion and electron fluxes monitored the effects of substorms in the inner magnetosphere (L6). The radar-observed AWFC activity was coincident with activity observed at geosynchronous orbit, as well as westward current surges in the ionosphere observed using ground-based magnetometers. The location of AWFCs with respect to the auroral oval was inferred from FUV auroral images recorded on board the IMAGE spacecraft. DMSP SSIES ion drift measurements confirmed the presence of AWFCs equatorward of the auroral oval. Systematic asymmetries in the interhemispheric signatures of the AWFCs probably arose because the magnetic flux tubes were distorted at L shells passing close to the substorm dipolarisation region. Transient asymmetries were attributed to the development of nearby field-aligned potential drops and currents.


Radio Science ◽  
1968 ◽  
Vol 3 (7) ◽  
pp. 715-719 ◽  
Author(s):  
G. K. Parks ◽  
R. L. Arnoldy ◽  
T. W. Lezniak ◽  
J. R. Winckler

Author(s):  
Athreya Shankar ◽  
Ananth Saran Yalamarthy ◽  
Tirth Shah ◽  
Varun Kelkar ◽  
Abhishikth Mallampalli ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document