scholarly journals Modeling irrigation effects on the regional climate in the "Greater Alpine Region" using a newly developed parameterization

2021 ◽  
Author(s):  
Christina Asmus ◽  
Peter Hoffmann ◽  
Joni-Pekka Pietikäinen ◽  
Jürgen Böhner ◽  
Diana Rechid

<p><span>Irrigation is a common </span><span>land use </span><span>practice to adapt agriculture to unsuitable climatic conditions. It is highly relevant to ensure food production. Due to the growing population and its food demand in the future, as well as due to climate change, the irrigated area</span><span>s</span> <span>are</span><span> expected to increase </span><span>globally</span><span>. Therefore, it is important to understand the effects of irrigation on the climate system. Irrigation of cropland alters the biogeophysical properties of the land surface and the soil. Due to the land-atmosphere interactions, these alterations </span><span>have the potential to</span><span> affect the atmosphere directly or through feedback processes. Various studies point out that the effects of irrigation, like temperature reduction, are particularly pronounced on local to regional scales where they bear a mitigation potential to regional climate change. </span></p><p><span>This study aims to investigate the effects of irrigation on the regional climate. To model these effects, we developed and implemented a new flexible irrigation parameterization into the regional climate model REMO. In our setup, REMO is interactively coupled to the mosaic-based vegetation module iMOVE, enabling the calculation of irrigation effects and feedbacks on land, vegetation, and atmosphere. Multiple simulations for specific climatic conditions with </span><span>and without </span><span>the </span><span>new</span><span> irrigation parameterization are conducted on 0.11° resolution for the ”Greater Alpine Region“, which includes some of Europe‘s most intensively irrigated areas like the Po valley in Northern Italy. The differences between these simulations are analyzed to identify and quantify irrigation effects on atmospheric processes. </span></p><p><span>The </span><span>new irrigation parameterization will be introduced and the</span><span> analysis </span><span>of the irrigation effects</span> <span>on the regional climate in the “Greater Alpine Region” </span><span>will be presented. </span></p>


Atmosphere ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 26 ◽  
Author(s):  
Katiana Constantinidou ◽  
George Zittis ◽  
Panos Hadjinicolaou

The Eastern Mediterranean (EM) and the Middle East and North Africa (MENA) are projected to be exposed to extreme climatic conditions in the 21st century, which will likely induce adverse impacts in various sectors. Relevant climate change impact assessments utilise data from climate model projections and process-based impact models or simpler, index-based approaches. In this study, we explore the implied uncertainty from variations of climate change impact-related indices as induced by the modelled climate (WRF regional climate model) from different land surface schemes (Noah, NoahMP, CLM and RUC). The three climate change impact-related indicators examined here are the Radiative Index of Dryness (RID), the Fuel Dryness Index (Fd) and the Water-limited Yield (Yw). Our findings indicate that Noah simulates the highest values for both RID and Fd, while CLM gives the highest estimations for winter wheat Yw. The relative dispersion in the three indices derived by the different land schemes is not negligible, amounting, for the overall geographical domain of 25% for RID and Fd, and 10% for Yw. The dispersion is even larger for specific sub-regions.



2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Zhili Wang ◽  
Lei Lin ◽  
Yangyang Xu ◽  
Huizheng Che ◽  
Xiaoye Zhang ◽  
...  

AbstractAnthropogenic aerosol (AA) forcing has been shown as a critical driver of climate change over Asia since the mid-20th century. Here we show that almost all Coupled Model Intercomparison Project Phase 6 (CMIP6) models fail to capture the observed dipole pattern of aerosol optical depth (AOD) trends over Asia during 2006–2014, last decade of CMIP6 historical simulation, due to an opposite trend over eastern China compared with observations. The incorrect AOD trend over China is attributed to problematic AA emissions adopted by CMIP6. There are obvious differences in simulated regional aerosol radiative forcing and temperature responses over Asia when using two different emissions inventories (one adopted by CMIP6; the other from Peking university, a more trustworthy inventory) to driving a global aerosol-climate model separately. We further show that some widely adopted CMIP6 pathways (after 2015) also significantly underestimate the more recent decline in AA emissions over China. These flaws may bring about errors to the CMIP6-based regional climate attribution over Asia for the last two decades and projection for the next few decades, previously anticipated to inform a wide range of impact analysis.



2013 ◽  
Vol 448-453 ◽  
pp. 916-922
Author(s):  
Yan Rong Yang ◽  
Zhe Kong ◽  
Chun Ming Liu

The relationship between vegetation cover and climate change is one of the most important research fields in global change. Herein Jiangsu province and thereabout in China is chosen to be the research field. Under the support of observations from normalized differential vegetation index (NDVI) during years from 1998 to 2008 and corresponding benchmark weather stations, the relationship between vegetation and climate change had been analyzed combined with simulations from regional climate model RegCM3, in perspectives of point vegetation cover amount and area vegetation cover type respectively. Conclusions are: (1) Points observations showed that NDVI had positive correlation with annual total precipitation and negative correlation with annual average temperature. (2) Area simulations showed that two different vegetation types in south and north Jiangsu almost had same 8warming value, but the incremental annual precipitation amount is more significant in south Jiangsu.





Author(s):  
S. P. Holoborodko ◽  
O. M. Dymov

The article presents the results of scientific research to specify the seed productivity of alfalfa grown on irrigated and rainfed lands of the southern Steppe of Ukraine. It is proved that obtaining stably high yields of conditioned alfalfa seeds under the conditions of regional climate change is possible only providing an optimal supply of productive moisture in the soil, since in recent years the crop has been grown under high temperature conditions and insufficient precipitation. It was established that irrigation of seed alfalfa throughout the growing season regardless of cultivar and mowing, should be conducted in two interphase periods: "the beginning of regrowth (shoots) – early budding" and "the beginning of budding – beginning of flowering". In the first interphase period, it is necessary to create conditions for optimal growth and development of plants that is achieved by maintaining the level of pre-irrigation humidity in 0-100 cm layer in the range of 70-75% MMHC on dark chestnut soils and 55-60% – on sandy loam chernozems. In the second interphase period, it is necessary to provide optimal conditions for the development of production processes and the formation of conditioned seed yields that is achieved by inhibiting growth processes, since alfalfa tends to grow up. Therefore, the level of pre-irrigation humidity of the calculated layer on medium and heavy loamy soils should be maintained within 60-65% MMHC and 45-50% MMHC – on sandy loam chernozems. The analysis of changes in natural and climatic conditions carried out over the past years shows that in the subzone of the southern Steppe, alfalfa cultivation for seeds is possible only by providing the developed irrigated agriculture. Getting the deficit of natural moisture solved, combined with high availability of heat resources and fertile dark‑chestnut soils and southern chernozems, is an objective natural prerequisite for further growth of seed productivity of alfalfa and reducing its dependence on extreme weather conditions and, above all, in medium‑dry (75%) and dry (95%) precipitation years.



2005 ◽  
Vol 18 (17) ◽  
pp. 3536-3551 ◽  
Author(s):  
Bart van den Hurk ◽  
Martin Hirschi ◽  
Christoph Schär ◽  
Geert Lenderink ◽  
Erik van Meijgaard ◽  
...  

Abstract Simulations with seven regional climate models driven by a common control climate simulation of a GCM carried out for Europe in the context of the (European Union) EU-funded Prediction of Regional scenarios and Uncertainties for Defining European Climate change risks and Effects (PRUDENCE) project were analyzed with respect to land surface hydrology in the Rhine basin. In particular, the annual cycle of the terrestrial water storage was compared to analyses based on the 40-yr ECMWF Re-Analysis (ERA-40) atmospheric convergence and observed Rhine discharge data. In addition, an analysis was made of the partitioning of convergence anomalies over anomalies in runoff and storage. This analysis revealed that most models underestimate the size of the water storage and consequently overestimated the response of runoff to anomalies in net convergence. The partitioning of these anomalies over runoff and storage was indicative for the response of the simulated runoff to a projected climate change consistent with the greenhouse gas A2 Synthesis Report on Emission Scenarios (SRES). In particular, the annual cycle of runoff is affected largely by the terrestrial storage reservoir. Larger storage capacity leads to smaller changes in both wintertime and summertime monthly mean runoff. The sustained summertime evaporation resulting from larger storage reservoirs may have a noticeable impact on the summertime surface temperature projections.



2021 ◽  
Author(s):  
Lei Lin ◽  
Zhili Wang ◽  
Yangyang Xu ◽  
Huizheng Che ◽  
Xiaoye Zhang ◽  
...  

<p><span>Anthropogenic aerosol (AA) forcing has been shown as a critical driver of climate change over Asia since the mid-20th century. Here we show that almost all Coupled Model Intercomparison Project Phase 6 (CMIP6) models fail to capture the observed dipole pattern of aerosol optical depth (AOD) trends over Asia during 2006–2014, last decade of CMIP6 historical simulation, due to an opposite trend over eastern China compared with observations. The incorrect AOD trend over China is attributed to problematic AA emissions adopted by CMIP6. There are obvious differences in simulated regional aerosol radiative forcing and temperature responses over Asia when using two different emissions inventories (one adopted by CMIP6; the other from Peking university, a more trustworthy inventory) to driving a global aerosol-climate model separately. We further show that some widely adopted CMIP6 pathways (after 2015) also significantly underestimate the more recent decline in AA emissions over China. These flaws may bring about errors to the CMIP6-based regional climate attribution over Asia for the last two decades and projection for the next few decades, previously anticipated to inform a wide range of impact analysis.</span></p>



2020 ◽  
Author(s):  
Eugenia Monaco ◽  
Roberto De Mascellis ◽  
Giuliana Barbato ◽  
Paola Mercogliano ◽  
Maurizio Buonanno ◽  
...  

<p>In the Mediterranean area, the expected increase in temperature coupled with the decrease in rainfall, as well as the increase in the frequency of extreme events (heatwaves and drought, IPCC, 2019), will severely affect the survival of current vineyard areas. Cultivar thermal requirement and soil water availability could be not satisfied, leading to a limitation in yield and berry quality also due to constraints in the achievement of optimal grape maturity.</p><p>In this context, the understanding of how the spatial viticultural suitability will change under climate change is of primary interest in order to identify the best adaptation strategies to guarantee the resilience of current viticultural areas. Moreover, the improvement of knowledge of climate, soil, and their interaction for each specific cultivar will be fundamental because the terroir system is based on this interaction able to influence the plant status (e.g., water).</p><p>In this study, different pedo-climatic conditions (past, present, and future) in three Italian sites at different latitudes (from center to southern), were compared for two red varieties of grapevine: Aglianico (indigenous cv) and Cabernet Sauvignon (international cv).</p><p>Grapevine adaptation to future climate in each experimental farm in Campania, Molise, and Sicily Italian regions has been realized through the use of bioclimatic indexes (e.g., Amerine & Winkler for Aglianico 2110 GDD). The climatic evaluation was performed using Regional Climate Model COSMO-CLM at high-resolution (8km x 8km) climate projections RCP4.5 and RCP 8.5 (2010-2100) and Reference Climate (RC, 1971-2005).</p><p>Results have shown how climate change will affect the cultivation of Aglianico and Cabernet Sauvignon, considering both the climate and bioclimatic needs of cultivars themselves in the current viticultural areas.</p><p>Finally, coupled with the climatic evaluation, a pedological survey to characterize the soils, and the analysis of satellite images (Sentinel2 ) coupled with stemwood anatomical analysis has been performed to reconstruct the past eco-physiological behavior.</p>



2020 ◽  
Author(s):  
Melissa Bukovsky ◽  
Linda Mearns ◽  
Jing Gao ◽  
Brian O'Neill

<p>In order to assess the combined effects of green-house-gas-induced climate change and land-use land-cover change (LULCC), we have produced regional climate model (RCM) simulations that are complementary to the North-American Coordinated Regional Downscaling Experiment (NA-CORDEX) simulations, but with future LULCCs that are consistent with particular Shared Socioeconomic Pathways (SSPs).  In standard, existing NA-CORDEX simulations, land surface characteristics are held constant at present day conditions.  These new simulations, in conjunction with the NA-CORDEX simulations, will help us assess the magnitude of the changes in regional climate forced by LULCC relative to those produced by increasing greenhouse gas concentrations.     </p><p>Understanding the magnitude of the regional climate effects of LULCC is important to the SSP-RCP scenarios framework.  Whether or not the pattern of climate change resulting from a given SSP-RCP pairing is sensitive to the pattern of LULCC is an understudied problem.  This work helps address this question, and will inform thinking about possible needed modifications to the scenarios framework to better account for climate-land use interactions.</p><p>Accordingly, in this presentation, we will examine the state of the climate at the end of the 21<sup>st</sup> century with and without SSP-driven LULCCs in RCM simulations produced using WRF under the RCP8.5 concentration scenario.  The included LULCC change effects have been created following the SSP3 and SSP5 narratives using an existing agricultural land model linked with a new long-term spatial urban land model. </p>



2017 ◽  
Vol 98 (1) ◽  
pp. 29-35 ◽  
Author(s):  
Linda O. Mearns ◽  
Melissa S. Bukovsky ◽  
Vanessa J. Schweizer

Abstract In this brief article, we report the initial results of an expert elicitation with the co-PIs (regional climate modelers) of the North American Regional Climate Change Assessment Program regarding their evaluation of the relative quality of regional climate model simulations focusing on the subregion dominated by the North American monsoon (NAM). We assumed that an expert elicitation framework might reveal interesting beliefs and understanding that would be different from what would be obtained from calculating quantitative metrics associated with model quality. The simulations considered were of six regional climate models (RCMs) that used NCEP Reanalysis 2 as boundary conditions for the years 1980–2004. The domain covers most of North America and adjacent oceans. The seven participating regional modelers were asked to complete surveys on their background beliefs about model credibility and their judgments regarding the quality of the six models based on a series of plots of variables related to the NAM (e.g., temperature, winds, humidity, moisture flux, precipitation). The specific RCMs were not identified. We also compared the results of the expert elicitation with those obtained from using a series of metrics developed to evaluate a European collection of climate model simulations. The results proved to be quite different in the two cases. The results of this exercise proved very enlightening regarding regional modelers’ perceptions of model quality and their beliefs about how this information should or should not be used. Based on these pilot study results, we believe a more complete study is warranted.



Sign in / Sign up

Export Citation Format

Share Document