What is CHEOPS?

2020 ◽  
Author(s):  
Kate Isaak

<p>Launched on 18 December 2019, CHEOPS (CHaracterising ExOPlanet Satellite) is the first exoplanet mission dedicated to the search for transits of exoplanets by means of ultrahigh precision photometry of bright stars already known to host planets. It is S-(small) class mission in ESA’s Cosmic Vision 2015-2025, and a partnership between Switzerland and ESA, with important contributions from 10 other member states.<br class="" /><br class="" />CHEOPS will provide the unique capability of determining accurate radii for a subset of planets in the super-Earth to Neptune mass range, for which masses have already been estimated from ground- based spectroscopic surveys. It will also provide precision radii for new planets discovered by ground- and space-based transit surveys, including TESS. By combining known masses with CHEOPS sizes, it will be possible to determine accurate densities for these smaller planets, providing key insight into their composition and internal structure. By identifying transiting exoplanets with high potential for in-depth characterisation – e.g. those that are potentially rocky and have thin atmospheres - CHEOPS will also provide prime targets for future instruments suited to the spectroscopic characterisation of exoplanetary atmospheres.<br class="" /><br class="" /></p> <div class="">80 % of the obsering time in the 3.5 year nominal mission lifetime on the satellite is dedicated to the Guaranteed Time Observing Programme defined by the CHEOPS Science Team. The remaining 20% is available to the Community through the ESA Guest Observers Programme, which comprises annual calls and a discretionary time component.   </div> <div class=""> </div> <p>In this first poster in a series of three, we present an overview of the mission, including its capabilities and scientific performances.</p>

2020 ◽  
Author(s):  
Kate Isaak ◽  
Didier Queloz ◽  
Willy Benz

<div class="">Launched on 18 December 2019, CHEOPS (CHaracterising ExOPlanet Satellite) is the first exoplanet mission dedicated to the search for transits of exoplanets by means of ultrahigh precision photometry of bright stars already known to host planets. It is the first S-(small) class mission in ESA’s Cosmic Vision 2015-2025, and a partnership between Switzerland and ESA, with important contributions from 10 other member states.<br class="" /><br class="" />CHEOPS will provide the unique capability of determining accurate radii for a subset of planets in the super-Earth to Neptune mass range, for which masses have already been estimated from ground- based spectroscopic surveys. It will also provide precision radii for new planets discovered by ground- and space-based transit surveys, including TESS. By combining known masses with CHEOPS sizes, it will be possible to determine accurate densities for these smaller planets, providing key insight into their composition and internal structure. By identifying transiting exoplanets with high potential for in-depth characterisation – e.g. those that are potentially rocky and have thin atmospheres - CHEOPS will also provide prime targets for future instruments suited to the spectroscopic characterisation of exoplanetary atmospheres.</div> <div class=""> </div> <div class="">80 % of the obsering time in the 3.5 year nominal mission lifetime on the satellite is dedicated to the Guaranteed Time Observing Programme defined by the CHEOPS Science Team. The remaining 20% is available to the Community through the ESA Guest Observers Programme, which comprises annual calls and a discretionary time component.   </div> <div class=""> </div> <div class=""> <div class="">In this second poster in a series of three,  we present an overview of the CHEOPS Guaranteed Time Observing Programme as  defined by the CHEOPS Science Team. </div> </div>


2020 ◽  
Author(s):  
Kate Isaak

<p>Launched on 18 December 2019, CHEOPS (CHaracterising ExOPlanet Satellite) is the first exoplanet mission dedicated to the search for transits of exoplanets by means of ultrahigh precision photometry of bright stars already known to host planets. It is the first S-(small) class mission in ESA’s Cosmic Vision 2015-2025, and a partnership between Switzerland and ESA, with important contributions from 10 other member states.<br class="" /><br class="" />CHEOPS will provide the unique capability of determining accurate radii for a subset of planets in the super-Earth to Neptune mass range, for which masses have already been estimated from ground- based spectroscopic surveys. It will also provide precision radii for new planets discovered by ground- and space-based transit surveys, including TESS. By combining known masses with CHEOPS sizes, it will be possible to determine accurate densities for these smaller planets, providing key insight into their composition and internal structure. By identifying transiting exoplanets with high potential for in-depth characterisation – e.g. those that are potentially rocky and have thin atmospheres - CHEOPS will also provide prime targets for future instruments suited to the spectroscopic characterisation of exoplanetary atmospheres.<br class="" /><br class="" /></p> <div class="">80 % of the obsering time in the 3.5 year nominal mission lifetime on the satellite is dedicated to the Guaranteed Time Observing Programme defined by the CHEOPS Science Team. The remaining 20% is available to the Community through the ESA Guest Observers Programme, which comprises annual calls and a discretionary time component.   </div> <div class=""> </div> <div class="">In this final poster in a series of three, we provide an overview of Community Access to CHEOPS, with an emphasis on the CHEOPS Guest Observers Programme.</div>


2021 ◽  
Author(s):  
Kate Isaak ◽  
Theresa Lüftinger

<p>Launched on 18 December 2019, CHEOPS (CHaracterising ExOPlanet Satellite) is the first exoplanet mission dedicated to the search for transits of exoplanets by means of ultrahigh precision photometry of bright stars already known to host planets. It is the first S-(small) class mission in ESA’s Cosmic Vision 2015-2025, and a partnership between Switzerland and ESA, with important contributions from 10 other member states.<br class="" /><br class="" />CHEOPS will provide the unique capability of determining accurate radii for a subset of planets in the super-Earth to Neptune mass range, for which masses have already been estimated from ground- based spectroscopic surveys. It will also provide precision radii for new planets discovered by ground- and space-based transit surveys, including TESS. By combining known masses with CHEOPS sizes, it will be possible to determine accurate densities for these smaller planets, providing key insight into their composition and internal structure. By identifying transiting exoplanets with high potential for in-depth characterisation – e.g. those that are potentially rocky and have thin atmospheres - CHEOPS will also provide prime targets for future instruments suited to the spectroscopic characterisation of exoplanetary atmospheres.</p> <p>In this poster we detail how the Community can access CHEOPS, with emphasis on the ESA-run Guest Observers Programme and the Annual Announcement of Opportunity for observing time Year 3 of CHEOPS, which is foreseen to come out in Quarter 4 2021.</p>


2016 ◽  
Vol 113 (27) ◽  
pp. E3960-E3966 ◽  
Author(s):  
Joshua L. Adelman ◽  
Chiara Ghezzi ◽  
Paola Bisignano ◽  
Donald D. F. Loo ◽  
Seungho Choe ◽  
...  

Secondary active transporters, such as those that adopt the leucine-transporter fold, are found in all domains of life, and they have the unique capability of harnessing the energy stored in ion gradients to accumulate small molecules essential for life as well as expel toxic and harmful compounds. How these proteins couple ion binding and transport to the concomitant flow of substrates is a fundamental structural and biophysical question that is beginning to be answered at the atomistic level with the advent of high-resolution structures of transporters in different structural states. Nonetheless, the dynamic character of the transporters, such as ion/substrate binding order and how binding triggers conformational change, is not revealed from static structures, yet it is critical to understanding their function. Here, we report a series of molecular simulations carried out on the sugar transporter vSGLT that lend insight into how substrate and ions are released from the inward-facing state of the transporter. Our simulations reveal that the order of release is stochastic. Functional experiments were designed to test this prediction on the human homolog, hSGLT1, and we also found that cytoplasmic release is not ordered, but we confirmed that substrate and ion binding from the extracellular space is ordered. Our findings unify conflicting published results concerning cytoplasmic release of ions and substrate and hint at the possibility that other transporters in the superfamily may lack coordination between ions and substrate in the inward-facing state.


2019 ◽  
Vol 85 (15) ◽  
Author(s):  
Marietta John-White ◽  
James Gardiner ◽  
Priscilla Johanesen ◽  
Dena Lyras ◽  
Geoffrey Dumsday

ABSTRACT β-Aminopeptidases have the unique capability to hydrolyze N-terminal β-amino acids, with varied preferences for the nature of β-amino acid side chains. This unique capability makes them useful as biocatalysts for synthesis of β-peptides and to kinetically resolve β-peptides and amides for the production of enantiopure β-amino acids. To date, six β-aminopeptidases have been discovered and functionally characterized, five from Gram-negative bacteria and one from a fungus, Aspergillus. Here we report on the purification and characterization of an additional four β-aminopeptidases, one from a Gram-positive bacterium, Mycolicibacterium smegmatis (BapAMs), one from a yeast, Yarrowia lipolytica (BapAYlip), and two from Gram-negative bacteria isolated from activated sludge identified as Burkholderia spp. (BapABcA5 and BapABcC1). The genes encoding β-aminopeptidases were cloned, expressed in Escherichia coli, and purified. The β-aminopeptidases were produced as inactive preproteins that underwent self-cleavage to form active enzymes comprised of two different subunits. The subunits, designated α and β, appeared to be tightly associated, as the active enzyme was recovered after immobilized-metal affinity chromatography (IMAC) purification, even though only the α-subunit was 6-histidine tagged. The enzymes were shown to hydrolyze chromogenic substrates with the N-terminal l-configurations β-homo-Gly (βhGly) and β3-homo-Leu (β3hLeu) with high activities. These enzymes displayed higher activity with H-βhGly-p-nitroanilide (H-βhGly-pNA) than previously characterized enzymes from other microorganisms. These data indicate that the new β-aminopeptidases are fully functional, adding to the toolbox of enzymes that could be used to produce β-peptides. Overexpression studies in Pseudomonas aeruginosa also showed that the β-aminopeptidases may play a role in some cellular functions. IMPORTANCE β-Aminopeptidases are unique enzymes found in a diverse range of microorganisms that can utilize synthetic β-peptides as a sole carbon source. Six β-aminopeptidases have been previously characterized with preferences for different β-amino acid substrates and have demonstrated the capability to catalyze not only the degradation of synthetic β-peptides but also the synthesis of short β-peptides. Identification of other β-aminopeptidases adds to this toolbox of enzymes with differing β-amino acid substrate preferences and kinetics. These enzymes have the potential to be utilized in the sustainable manufacture of β-amino acid derivatives and β-peptides for use in biomedical and biomaterial applications. This is important, because β-amino acids and β-peptides confer increased proteolytic resistance to bioactive compounds and form novel structures as well as structures similar to α-peptides. The discovery of new enzymes will also provide insight into the biological importance of these enzymes in nature.


2020 ◽  
Vol 635 ◽  
pp. A23 ◽  
Author(s):  
D. Futyan ◽  
A. Fortier ◽  
M. Beck ◽  
D. Ehrenreich ◽  
A. Bekkelien ◽  
...  

Context. The CHaracterising ExOPlanet Satellite (CHEOPS) is a mission dedicated to the search for exoplanetary transits through high precision photometry of bright stars already known to host planets. The telescope will provide the unique capability of determining accurate radii for planets whose masses have already been measured from ground-based spectroscopic surveys. This will allow a first-order characterisation of the planets’ internal structure through the determination of the bulk density, providing direct insight into their composition. By identifying transiting exoplanets with high potential for in-depth characterisation, CHEOPS will also provide prime targets for future instruments suited to the spectroscopic characterisation of exoplanetary atmospheres. Aims. The CHEOPS simulator has been developed to perform detailed simulations of the data which is to be received from the CHEOPS satellite. It generates accurately simulated images that can be used to explore design options and to test the on-ground data processing, in particular, the pipeline producing the photometric time series. It is, thus, a critical tool for estimating the photometric performance expected in flight and to guide photometric analysis. It can be used to prepare observations, consolidate the noise budget, and asses the performance of CHEOPS in realistic astrophysical fields that are difficult to reproduce in the laboratory. Methods. The simulator has been implemented as a highly configurable tool called CHEOPSim, with a web-based user interface. Images generated by CHEOPSim take account of many detailed effects, including variations of the incident signal flux and backgrounds, and detailed modelling of the satellite orbit, pointing jitter and telescope optics, as well as the CCD response, noise and readout. Results. The simulator results presented in this paper have been used in the context of validating the data reduction processing chain, in which image time series generated by CHEOPSim were used to generate light curves for simulated planetary transits across real and simulated targets. Independent analysts were successfully able to detect the planets and measure their radii to an accuracy within the science requirements of the mission: for an Earth-sized planet with an orbital period of 50 days orbiting a Sun-like target with magnitude V = 6, the median measured value of the planet to star radius ratio, Rp/Rs, was 0.00923 ± 0.00054(stat) ± 0.00019(syst), compared to a true input value of 0.00916. For a Neptune-sized planet with an orbital period of 13 days orbiting a target with spectral type K5V and magnitude V = 12, the median measured value of Rp/Rs was 0.05038 ± 0.00061(stat) ± 0.00031(syst), compared to a true input value of 0.05.


Soft Matter ◽  
2013 ◽  
Vol 9 (48) ◽  
pp. 11690 ◽  
Author(s):  
María José Pastoriza-Gallego ◽  
Martín Pérez-Rodríguez ◽  
Carlos Gracia-Fernández ◽  
Manuel M. Piñeiro

2014 ◽  
pp. 193-212 ◽  
Author(s):  
Andrea Teti

In addition to being characterised as a ‘regime of truth’, Orientalist discourses also display the general properties of confessional discourses outlined in Foucault’s Will to Knowledge.  The article argues that there is a similarity in the ‘effects of power’ made possible within these frameworks, particular regarding the legitimisation and application of discipline.  Finally, the paper draws out a few implications for the analysis of power and resistance in confessional economies of power.  The perspective this paper provides an insight into the internal structure of Orientalist discourse; connects this structure with Orientalism’s ‘effects of power’; affords purchase on both Orientalism’s organisational and ontogenetic properties; helps explain the persistence of Orientalism – both overt and covert – despite three decades of post-Orientalist scholarship.  In this sense, a confessional perspective on Orientalism affords a broad view of the contemporary politics of truth in which Orientalism plays such as an important part.  Finally, a confessional perspective affords purchase on the nature of power, the formation of subjectivities, and the possibilities of resistance within Orientalist discursive contexts, which Said’s own analysis is often said to lack.


2018 ◽  
Vol 619 ◽  
pp. A3 ◽  
Author(s):  
Lorenzo Pino ◽  
David Ehrenreich ◽  
Romain Allart ◽  
Christophe Lovis ◽  
Matteo Brogi ◽  
...  

Transmission spectroscopy with ground-based, high-resolution instruments provides key insight into the composition of exoplanetary atmospheres. Molecules such as water and carbon monoxide have been unambiguously identified in hot gas giants through cross-correlation techniques. A maximum in the cross-correlation function (CCF) is found when the molecular absorption lines in a binary mask or model template match those contained in the planet. Here, we demonstrate how the CCF method can be used to diagnose broadband spectroscopic features such as scattering by aerosols in high-resolution transit spectra. The idea consists in exploiting the presence of multiple water bands from the optical to the near-infrared. We have produced a set of models of a typical hot Jupiter spanning various conditions of temperature and aerosol coverage. We demonstrate that comparing the CCFs of individual water bands for the models constrains the presence and the properties of the aerosol layers. The contrast difference between the CCFs of two bands can reach ~100 ppm, which could be readily detectable with current or upcoming high-resolution stabilized spectrographs spanning a wide spectral range, such as ESPRESSO, CARMENES, HARPS-N+GIANO, HARPS+NIRPS, SPIRou, or CRIRES+.


Sign in / Sign up

Export Citation Format

Share Document