Zonal Profiles of Jupiter's Tropospheric Abundances from Near-Infrared Juno JIRAM Spectroscopy

2021 ◽  
Author(s):  
Henrik Melin ◽  
Leigh Fletcher ◽  
Patrick Irwin ◽  
Davide Grassi

<p>The polar orbit of the Juno spacecraft provides an unprecedented view of Jupiter's atmosphere as it passes above the cloud tops every 53 days. The spectrum in the near infrared is dominated by reflected sunlight from aerosols (both condensate clouds and hazes) in the troposphere, as well as absorptions by the molecular species present. In addition, thermal emission longward of 4.5 µm provides access to the gaseous composition and aerosols below the top-most clouds.  Of particular importance in shaping the spectra are ammonia, phosphine and water, in addition to minor contributions from species such as arsine, germane and carbon monoxide. These regions also include emissions by ionospheric H<sub>3</sub><sup>+</sup>. Here, we produce meridionally averaged zonal profiles from the Juno-JIRAM observations obtained during PJ3, which provide almost complete latitude coverage. To analyse the observations, we use the radiative transfer and retrieval code NEMESIS (Irwin et al., 2008), which has been updated to cover this wavelength with the latest line-data from HITRAN. Our aim is to analyse both the reflected-sunlight region (2-4 µm) and the thermal emission region (4-5 µm) simultaneously for the first time, building on the work of Grassi et al. (2019) and Grassi et al. (2020).  We investigate the appropriate set of aerosol and haze layers, starting with NH4SH at 1.3 bars, NH3 and 0.7 bars and two grey hazes: one in the troposphere and one in the stratosphere.  The optical properties of these aerosols are tested to find the optimal cloud structure to reproduce the full JIRAM spectrum. From the retrievals of the zonally-averaged spectra we investigate whether spatial variations of tropospheric composition are truly required to fit the data, comparing gaseous contrasts to the expected circulation patterns associated with Jupiter’s belts and zones.</p>

2021 ◽  
Author(s):  
Hugh Littlehailes ◽  
William R Hendren ◽  
Stacey Drakeley ◽  
Robert M Bowman ◽  
Fumin Huang

Abstract Optical properties of refractory intermetallic thin films of Au 3 Zr were experimentally investigated for the first time, which show distinctive plasmonic properties in the visible and near infrared region. The films were fabricated through DC magnetron sputtering at various deposition temperature ranging from room temperature to 427°C and annealed at different vacuum levels. Both the structural and optical properties are found to be critically dependent on deposition temperature and anneal conditions. Films deposited between 205-320°C are shown to exhibit lower negative permittivity and better thermal stability, which could be linked to specific crystalline orientations. The films are stable when annealed at 10 -8 Torr, but are partially oxidized when annealed at 10 -6 Torr, suggesting oxidization could be a restricting issue for high-temperature applications in ambient environment.


1991 ◽  
Vol 148 ◽  
pp. 205-206 ◽  
Author(s):  
A. Krabbe ◽  
J. Storey ◽  
V. Rotaciuc ◽  
S. Drapatz ◽  
R. Genzel

Images with subarcsec spatial resolution in the light of near-infrared atomic (Bry) and molecular hydrogen H2 (S(1) v=1-0) emission lines were obtained for some extended, pointlike objects in the Large Magellanic Cloud (LMC) for the first time. We used the Max-Planck-Institut für extraterrestrische Physik (MPE) near-infrared array spectrometer FAST (image scale 0.8”/pix, spectral resolving power 950) at the ESO/MPI 2.2m telescope, La Silla. We present some results on the 30-Dor complex and N159A5.


Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 637
Author(s):  
Hongliang Li ◽  
Zewen Lin ◽  
Yanqing Guo ◽  
Jie Song ◽  
Rui Huang ◽  
...  

The influence of N incorporation on the optical properties of Si-rich a-SiCx films deposited by very high-frequency plasma-enhanced chemical vapor deposition (VHF PECVD) was investigated. The increase in N content in the films was found to cause a remarkable enhancement in photoluminescence (PL). Relative to the sample without N incorporation, the sample incorporated with 33% N showed a 22-fold improvement in PL. As the N content increased, the PL band gradually blueshifted from the near-infrared to the blue region, and the optical bandgap increased from 2.3 eV to 5.0 eV. The enhancement of PL was suggested mainly from the effective passivation of N to the nonradiative recombination centers in the samples. Given the strong PL and wide bandgap of the N incorporated samples, they were used to further design an anti-counterfeiting label.


2020 ◽  
Vol 501 (2) ◽  
pp. 2305-2315
Author(s):  
Alice Zurlo ◽  
Lucas A Cieza ◽  
Megan Ansdell ◽  
Valentin Christiaens ◽  
Sebastián Pérez ◽  
...  

ABSTRACT We present results from a near-infrared (NIR) adaptive optics (AO) survey of pre-main-sequence stars in the Lupus molecular cloud with NACO at the Very Large Telescope (VLT) to identify (sub)stellar companions down to ∼20-au separation and investigate the effects of multiplicity on circumstellar disc properties. We observe for the first time in the NIR with AO a total of 47 targets and complement our observations with archival data for another 58 objects previously observed with the same instrument. All 105 targets have millimetre Atacama Large Millimetre/sub-millimetre Array (ALMA) data available, which provide constraints on disc masses and sizes. We identify a total of 13 multiple systems, including 11 doubles and 2 triples. In agreement with previous studies, we find that the most massive (Mdust > 50 M⊕) and largest (Rdust > 70 au) discs are only seen around stars lacking visual companions (with separations of 20–4800 au) and that primaries tend to host more massive discs than secondaries. However, as recently shown in a very similar study of >200 PMS stars in the Ophiuchus molecular cloud, the distributions of disc masses and sizes are similar for single and multiple systems for Mdust < 50 M⊕ and radii Rdust < 70 au. Such discs correspond to ∼80–90 per cent of the sample. This result can be seen in the combined sample of Lupus and Ophiuchus objects, which now includes more than 300 targets with ALMA imaging and NIR AO data, and implies that stellar companions with separations >20 au mostly affect discs in the upper 10${{\ \rm per\ cent}}$ of the disc mass and size distributions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Animesh Pandey ◽  
Reena Yadav ◽  
Mandeep Kaur ◽  
Preetam Singh ◽  
Anurag Gupta ◽  
...  

AbstractTopological insulators (TIs) possess exciting nonlinear optical properties due to presence of metallic surface states with the Dirac fermions and are predicted as a promising material for broadspectral phodotection ranging from UV (ultraviolet) to deep IR (infrared) or terahertz range. The recent experimental reports demonstrating nonlinear optical properties are mostly carried out on non-flexible substrates and there is a huge demand for the fabrication of high performing flexible optoelectronic devices using new exotic materials due to their potential applications in wearable devices, communications, sensors, imaging etc. Here first time we integrate the thin films of TIs (Bi2Te3) with the flexible PET (polyethylene terephthalate) substrate and report the strong light absorption properties in these devices. Owing to small band gap material, evolving bulk and gapless surface state conduction, we observe high responsivity and detectivity at NIR (near infrared) wavelengths (39 A/W, 6.1 × 108 Jones for 1064 nm and 58 A/W, 6.1 × 108 Jones for 1550 nm). TIs based flexible devices show that photocurrent is linearly dependent on the incident laser power and applied bias voltage. Devices also show very fast response and decay times. Thus we believe that the superior optoelectronic properties reported here pave the way for making TIs based flexible optoelectronic devices.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1035
Author(s):  
Ivan Shtepliuk ◽  
Volodymyr Khranovskyy ◽  
Arsenii Ievtushenko ◽  
Rositsa Yakimova

The growth of high-quality ZnO layers with optical properties congruent to those of bulk ZnO is still a great challenge. Here, for the first time, we systematically study the morphology and optical properties of ZnO layers grown on SiC substrates with off-cut angles ranging from 0° to 8° by using the atmospheric pressure meta–organic chemical vapor deposition (APMOCVD) technique. Morphology analysis revealed that the formation of the ZnO films on vicinal surfaces with small off-axis angles (1.4°–3.5°) follows the mixed growth mode: from one side, ZnO nucleation still occurs on wide (0001) terraces, but from another side, step-flow growth becomes more apparent with the off-cut angle increasing. We show for the first time that the off-cut angle of 8° provides conditions for step-flow growth of ZnO, resulting in highly improved growth morphology, respectively structural quality. Temperature-dependent photoluminescence (PL) measurements showed a strong dependence of the excitonic emission on the off-cut angle. The dependences of peak parameters for bound exciton and free exciton emissions on temperature were analyzed. The present results provide a correlation between the structural and optical properties of ZnO on vicinal surfaces and can be utilized for controllable ZnO heteroepitaxy on SiC toward device-quality ZnO epitaxial layers with potential applications in nano-optoelectronics.


2020 ◽  
Vol 15 (S359) ◽  
pp. 283-284
Author(s):  
D. May ◽  
J. E. Steiner ◽  
R. B. Menezes

AbstractWe use near-infrared Integral Field Unit (IFU) data to analyze the galaxies NGC 4151 and NGC 1068, which have very different Eddington ratios - ˜50 times lower for NGC 4151. Together with a detailed data cube treatment methodology, we reveal remarkable similarities between both AGN, such as the detection of the walls of an “hourglass” structure for the low-velocity [Fe ii] emission with the high-velocity emission within this hourglass; a molecular outflow - detected for the first time in NGC 4151; and the fragmentation of an expanding molecular bubble into bullets of ionized gas. Such observations suggest that NGC 4151 could represent a less powerful and more compact version of the outflow seen in NGC 1068, suggesting a universal feedback mechanism acting in quite different AGN.


2021 ◽  
Vol 13 (7) ◽  
pp. 1399
Author(s):  
Quang Nguyen Hao ◽  
Satoshi Takewaka

In this study, we analyze the influence of the Great East Japan Earthquake, which occurred on 11 March 2011, on the shoreline of the northern Ibaraki Coast. After the earthquake, the area experienced subsidence of approximately 0.4 m. Shoreline changes at eight sandy beaches along the coast are estimated using various satellite images, including the ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer), ALOS AVNIR-2 (Advanced Land Observing Satellite, Advanced Visible and Near-infrared Radiometer type 2), and Sentinel-2 (a multispectral sensor). Before the earthquake (for the period March 2001–January 2011), even though fluctuations in the shoreline position were observed, shorelines were quite stable, with the averaged change rates in the range of ±1.5 m/year. The shoreline suddenly retreated due to the earthquake by 20–40 m. Generally, the amount of retreat shows a strong correlation with the amount of land subsidence caused by the earthquake, and a moderate correlation with tsunami run-up height. The ground started to uplift gradually after the sudden subsidence, and shoreline positions advanced accordingly. The recovery speed of the beaches varied from +2.6 m/year to +6.6 m/year, depending on the beach conditions.


2001 ◽  
Vol 79 (3) ◽  
pp. 263-271
Author(s):  
Paul K Baker ◽  
Michael GB Drew ◽  
Deborah S Evans

Reaction of [WI2(CO)3(NCMe)2] with two equivalents of 1-phenyl-1-propyne (MeC2Ph) in CH2Cl2, and in the absence of light, gave the bis(1-phenyl-1-propyne) complex [WI2(CO)(NCMe)(η2-MeC2Ph)2] (1) in 77% yield. Treatment of equimolar quantities of 1 and NCR (R = Et, i-Pr, t-Bu, Ph) in CH2Cl2 afforded the nitrile-exchanged products, [WI2(CO)(NCR)(η2-MeC2Ph)2] (2-5) (R = Et (2), i-Pr (3), t-Bu (4), Ph (5)). Complexes 1, 2, and 5 were structurally characterized by X-ray crystallography. All three structures have the same pseudo-octahedral geometry, with the equatorial sites being occupied by cis and parallel alkyne groups, which are trans to the cis-iodo groups. The trans carbon monoxide and acetonitrile ligands occupy the axial sites. In structures 1 and 2, the methyl and phenyl substituents of the 1-phenyl-1-propyne ligands are cis to each other, whereas for the bulkier NCPh complex (5), the methyl and phenyl groups are trans to one another. This is the first time that this arrangement has been observed in the solid state in bis(alkyne) complexes of this type.Key words: bis(1-phenyl-1-propyne), carbonyl, nitrile, diiodo, tungsten(II), crystal structures.


Sign in / Sign up

Export Citation Format

Share Document