scholarly journals Vulnerability of European ecosystems to two compound dry and hot summers in 2018 and 2019

2021 ◽  
Vol 12 (4) ◽  
pp. 1015-1035
Author(s):  
Ana Bastos ◽  
René Orth ◽  
Markus Reichstein ◽  
Philippe Ciais ◽  
Nicolas Viovy ◽  
...  

Abstract. In 2018 and 2019, central Europe was affected by two consecutive extreme dry and hot summers (DH18 and DH19). The DH18 event had severe impacts on ecosystems and likely affected vegetation activity in the subsequent year, for example through depletion of carbon reserves or damage from drought. Such legacies from drought and heat stress can further increase vegetation susceptibility to additional hazards. Temporally compound extremes such as DH18 and DH19 can, therefore, result in an amplification of impacts due to preconditioning effects of past disturbance legacies. Here, we evaluate how these two consecutive extreme summers impacted ecosystems in central Europe and how the vegetation responses to the first compound event (DH18) modulated the impacts of the second (DH19). To quantify changes in vegetation vulnerability to each compound event, we first train a set of statistical models for the period 2001–2017, which are then used to predict the impacts of DH18 and DH19 on enhanced vegetation index (EVI) anomalies from MODIS. These estimates correspond to expected EVI anomalies in DH18 and DH19 based on past sensitivity to climate. Large departures from the predicted values can indicate changes in vulnerability to dry and hot conditions and be used to identify modulating effects by vegetation activity and composition or other environmental factors on observed impacts. We find two regions in which the impacts of the two compound dry and hot (DH) events were significantly stronger than those expected based on previous climate–vegetation relationships. One region, largely dominated by grasslands and crops, showed much stronger impacts than expected in both DH events due to an amplification of their sensitivity to heat and drought, possibly linked to changing background CO2 and temperature conditions. A second region, dominated by forests and grasslands, showed browning from DH18 to DH19, even though dry and hot conditions were partly alleviated in 2019. This browning trajectory was mainly explained by the preconditioning role of DH18 on the impacts of DH19 due to interannual legacy effects and possibly by increased susceptibility to biotic disturbances, which are also promoted by warm conditions. Dry and hot summers are expected to become more frequent in the coming decades, posing a major threat to the stability of European forests. We show that state-of-the-art process-based models could not represent the decline in response to DH19 because they missed the interannual legacy effects from DH18 impacts. These gaps may result in an overestimation of the resilience and stability of temperate ecosystems in future model projections.

2021 ◽  
Author(s):  
Ana Bastos ◽  
René Orth ◽  
Markus Reichstein ◽  
Philippe Ciais ◽  
Nicolas Viovy ◽  
...  

Abstract. In 2018 and 2019, central Europe was stricken by two consecutive extreme dry and hot summers (DH2018 and DH2019). The DH2018 had severe impacts on ecosystems and likely affected vegetation activity in the subsequent year, for example though depletion of carbon reserves or damage from drought. Such legacies from drought and heat stress can further increase vegetation susceptibility to additional hazards. Temporally compound extremes such as DH2018 and DH2019 can, therefore, result in an amplification of impacts by preconditioning effects of past disturbance legacies.Here, we evaluate how these two consecutive extreme summers impacted ecosystems in central Europe and how the vegetation responses to the first compound event (DH2018) modulated the impacts of the second (DH2019). To quantify the modulating role of vegetation responses to the impacts of each compound event, we first train a set of statistical models for the period 2001–2017 to predict the impacts of DH2018 and DH2019 on Enhanced Vegetation Index (EVI) anomalies from MODIS. These estimates can be seen as the expected EVI anomalies, had the impacts of DH2018 and DH2019 been consistent with past sensitivity to climate. These can then be used to identify modulating effects by vegetation activity and composition or other environmental factors such as elevated CO2 or warming trends.We find two regions in which the impacts of the two DH events were significantly stronger than those expected based on previous climate–vegetation relationships. One region, largely dominated by grasslands and crops, showed much stronger impacts than expected in both DH events due to an amplification of their sensitivity to heat and drought, possibly linked to changing background CO2 and temperature conditions. A second region, dominated by forests, showed browning from DH2018 to DH2019, even though dry and hot conditions were partly alleviated in 2019. This browning trajectory was mainly explained by the preconditioning role of DH2018 to the observed response to DH2019 through legacy effects, and possibly by increased susceptibility to biotic disturbances, which are also promoted by warm conditions.Dry and hot summers are expected to become more frequent in the coming decades posing a major threat to the stability of European forests. We show that state-of-the-art process based models miss these legacy effects. These gaps may result in an overestimation of the resilience and stability of temperate ecosystems in future model projections.


2020 ◽  
Author(s):  
Anikó Kern ◽  
Hrvoje Marjanović ◽  
Zoltán Barcza

<p>Spring leaf unfolding is a spectacular recurring event at the mid- and high latitudes that is associated with deciduous vegetation. Several lines of evidence indicate that the timing of spring green-up (i.e. the start of the season, SOS) changed in the past decades resulting in an earlier leaf unfolding - a phenomenon which is considered to be a major indicator of the effects of global warming. Contrary to the timing of the SOS, considerably less attention was paid to studying the dynamics of vegetation green-up, characterized by the leaf unfolding speed or the duration of spring green-up. The importance of studying the spring green-up dynamics lies in the fact that the duration of leaf development and timing of the onset of growth jointly determine the annual cycle of vegetation activity including carbon and energy balance, canopy conductance and evapotranspiration.</p><p>The aim of our research was to characterize the dynamics of leaf unfolding of deciduous broadleaf forests in the wider Carpathian Basin, located in Central Europe, using satellite remote sensing. The study was based on the Normalized Difference Vegetation Index (NDVI) time-series derived from the MOD09A1 official MODIS products during 2000–2019, the IGBP land cover classification dataset of the MCD12Q1 products, the CORINE 2012 (CLC2012) land cover dataset, the SRTM elevation dataset, and the FORESEE meteorological database. Our results clearly show that there is considerable interannual variability in the green-up duration of the deciduous broadleaf forest during 2000–2019. The last three years had, on average, the shortest (2018) and the two longest (2017 and 2019) recorded green-up durations in the region. Observed variability was partially attributed to the meteorological conditions, namely the extreme weather events occurring during the spring. We demonstrate that the meteorological conditions during the green-up period have a strong effect on the duration. The relationship between the SOS and the green-up duration reveals that the SOS also played an important role as a driver. Our results also reveal considerable elevation dependency both in the green-up duration and also in its correlation with SOS. Multiple linear regression models based on the SOS and the meteorological variables were also created to explain and predict the green-up duration.</p>


2021 ◽  
Author(s):  
Ana Bastos ◽  
René Orth ◽  
Markus Reichstein ◽  
Philippe Ciais ◽  
Nicolas Viovy ◽  
...  

<p>Extreme summer temperatures in western and central Europe have become more frequent and heatwaves more prolonged over the past decades. The summer of 2018 was one of the driest and hottest in the observational record and led to losses in vegetation productivity in central Europe by up to 50%. Legacy effects from such extreme summers can affect ecosystem functioning over several years, as vegetation slowly recovers. In 2019 an extremely dry and hot summer was registered again in the region, imposing stress conditions at a time when ecosystems were still recovering from summer 2018.</p><p>Using Enhanced Vegetation Index (EVI) fields from MODIS, we evaluate how ecosystems in central Europe responded to the occurrence of two consecutive extreme summers. We find that only ca. 21% of the area negatively impacted by drought in summer 2018 fully recovered in 2019.</p><p>We find that the strongest EVI anomalies in 2018/19 diverge from the long-term relationships between EVI and climate, indicating an increase in ecosystem vulnerability to heat and drought events. Furthermore, 18% of the area showed a worsening of plant status during summer 2019 in spite of drought alleviation, which could be explained by interannual legacy effects from 2018, such as impaired growth and increased biotic disturbances.</p><p>Land-surface models do not simulate interannual legacy effects from summer 2018 and thereby underestimate the impact of drought in 2019 on ecosystems. The poor representation of drought-induced damage and mortality and lack of biotic disturbances in these models may result in an overestimation of the resilience and stability of temperate ecosystems in the future.</p>


TAPPI Journal ◽  
2009 ◽  
Vol 8 (1) ◽  
pp. 20-26 ◽  
Author(s):  
PEEYUSH TRIPATHI ◽  
MARGARET JOYCE ◽  
PAUL D. FLEMING ◽  
MASAHIRO SUGIHARA

Using an experimental design approach, researchers altered process parameters and material prop-erties to stabilize the curtain of a pilot curtain coater at high speeds. Part I of this paper identifies the four significant variables that influence curtain stability. The boundary layer air removal system was critical to the stability of the curtain and base sheet roughness was found to be very important. A shear thinning coating rheology and higher curtain heights improved the curtain stability at high speeds. The sizing of the base sheet affected coverage and cur-tain stability because of its effect on base sheet wettability. The role of surfactant was inconclusive. Part II of this paper will report on further optimization of curtain stability with these four variables using a D-optimal partial-facto-rial design.


2020 ◽  
Author(s):  
Ryan Weber ◽  
Martin McCullagh

<p>pH-switchable, self-assembling materials are of interest in biological imaging and sensing applications. Here we propose that combining the pH-switchability of RXDX (X=Ala, Val, Leu, Ile, Phe) peptides and the optical properties of coumarin creates an ideal candidate for these materials. This suggestion is tested with a thorough set of all-atom molecular dynamics simulations. We first investigate the dependence of pH-switchabiliy on the identity of the hydrophobic residue, X, in the bare (RXDX)<sub>4</sub> systems. Increasing the hydrophobicity stabilizes the fiber which, in turn, reduces the pH-switchabilty of the system. This behavior is found to be somewhat transferable to systems in which a single hydrophobic residue is replaced with a coumarin containing amino acid. In this case, conjugates with X=Ala are found to be unstable and both pHs while conjugates with X=Val, Leu, Ile and Phe are found to form stable β-sheets at least at neutral pH. The (RFDF)<sub>4</sub>-coumarin conjugate is found to have the largest relative entropy value of 0.884 +/- 0.001 between neutral and acidic coumarin ordering distributions. Thus, we posit that coumarin-(RFDF)<sub>4</sub> containing peptide sequences are ideal candidates for pH-sensing bioelectronic materials.</p>


2020 ◽  
Author(s):  
Shubham Deolka ◽  
Orestes Rivada Wheelaghan ◽  
Sandra Aristizábal ◽  
Robert Fayzullin ◽  
Shrinwantu Pal ◽  
...  

We report selective formation of heterobimetallic PtII/CuI complexes that demonstrate how facile bond activation processes can be achieved by altering reactivity of common organoplatinum compounds through their interaction with another metal center. The interaction of the Cu center with Pt center and with a Pt-bound alkyl group increases the stability of PtMe2 towards undesired rollover cyclometalation. The presence of the CuI center also enables facile transmetalation from electron-deficient tetraarylborate [B(ArF)4]- anion and mild C-H bond cleavage of a terminal alkyne, which was not observed in the absence of an electrophilic Cu center. The DFT study indicates that the role of Cu center acts as a binding site for alkyne substrate, while activating its terminal C-H bond.


Author(s):  
Nikolai Petrov ◽  
Nikolai Petrov ◽  
Inna Nikonorova ◽  
Inna Nikonorova ◽  
Vladimir Mashin ◽  
...  

High-speed railway "Moscow-Kazan" by the draft crosses the Volga (Kuibyshev reservoir) in Chuvashia region 500 m below the village of New Kushnikovo. The crossing plot is a right-bank landslide slope with a stepped surface. Its height is 80 m; the slope steepness -15-16o. The authors should assess the risk of landslides and recommend anti-landslide measures to ensure the safety of the future bridge. For this landslide factors have been analyzed, slope stability assessment has been performed and recommendations have been suggested. The role of the following factors have been analyzed: 1) hydrologic - erosion and abrasion reservoir and runoff role; 2) lithologyc (the presence of Urzhum and Northern Dvina horizons of plastically deformable rocks, displacement areas); 3) hydrogeological (the role of perched, ground and interstratal water); 4) geomorphological (presence of the elemental composition of sliding systems and their structure in the relief); 5) exogeodynamic (cycles and stages of landslide systems development, mechanisms and relationship between landslide tiers of different generations and blocks contained in tiers). As a result 6-7 computational models at each of the three engineering-geological sections were made. The stability was evaluated by the method “of the leaning slope”. It is proved that the slope is in a very stable state and requires the following measures: 1) unloading (truncation) of active heads blocks of landslide tiers) and the edge of the plateau, 2) regulation of the surface and groundwater flow, 3) concrete dam, if necessary.


Author(s):  
З.С. САНОВА

В статье представлены материалы о взаимосвязи продолжительности продуктивного использования коров с характеристикой устойчивости к деградации, с возрастом отела и удоем. В исследованной, разнородной по происхождению, группе животных для прогноза продуктивного периода коров, обусловленного устойчивостью к деградации и возрастом первого отела, пригодно уравнение регрессии, аргументами в котором являются индекс устойчивости, возраст первого отела в первой и второй степенях. Коэффициент корреляции межу предсказанными значениями продуктивного периода и его фактическими величинами в I группе составляет 0,502, во II - 0,604. При этом крайние варианты прогнозируются со статистическими ошибками 5 мес при оценке индекса устойчивости по 2 лактациям и 4,1 мес по 3, а средние варианты, соответственно, 1,6 и 1,51 мес. Индекс устойчивости к процессу старения является важной характеристикой биологических особенностей коров, определяющий их продуктивное долголетие. Его оценка по первым 2 и 3 лактациям имеет прямолинейную связь с продуктивным периодом (r=0,4109 и r=0,5270), соответственно. Зависимость продуктивного периода от возраста первого отела криволинейная — с увеличением возраста первого отела сокращается срок продуктивного использования, при возрасте первого отела более 1400 дней срок продуктивного использования колеблется от 1,33 до 1,41 лактации. Коэффициент корреляции между этими характеристиками коров составляет - 0,2164 в I и - 0,2620 во II группах. The article presents materials about the relationship of the duration of productive use of cows with the characteristic of resistance to degradation, with the age of calving and milk yield. In the studied group of animals, which is heterogeneous in origin, the regression equation is suitable for predicting the productive period of cows due to resistance to degradation and the age of the first calving, the arguments of which are the stability index, the age of the first calving in the first and second degrees. The correlation coefficient between the predicted values of the productive period and its actual values in group I is 0.502, in group II - 0.604. At the same time, the extreme variants are predicted with statistical errors of 5 months when evaluating the stability index for 2 lactations and 4.1 months for 3, and the average variants, respectively, are 1.6 and 1.51 months. The index of resistance to the aging process is an important characteristic of the biological characteristics of cows, which determines their productive longevity. Its estimate for the first 2 and 3 lactations has a direct relationship with the productive period (r=0.4109 and r=0.5270), respectively. The dependence of the productive period age at first calving curvilinear with increasing age at first calving reduces the time to productive use, while age at first calving of more than 1400 days, the period of productive use ranges from 1.33 to 1.41 lactation. The correlation coefficient between these characteristics of cows is-0.2164 in I and-0.2620 in II groups.


2019 ◽  
Vol 18 (3) ◽  
pp. 232-238 ◽  
Author(s):  
Emanuela Onesti ◽  
Vittorio Frasca ◽  
Marco Ceccanti ◽  
Giorgio Tartaglia ◽  
Maria Cristina Gori ◽  
...  

Background: The cannabinoid system may be involved in the humoral mechanisms at the neuromuscular junction. Ultramicronized-palmitoylethanolamide (μm-PEA) has recently been shown to reduce the desensitization of Acetylcholine (ACh)-evoked currents in denervated patients modifying the stability of ACh receptor (AChR) function. <p> Objective: To analyze the possible beneficial effects of μm-PEA in patients with myasthenia gravis (MG) on muscular fatigue and neurophysiological changes. <p> Method: The duration of this open pilot study, which included an intra-individual control, was three weeks. Each patient was assigned to a 1-week treatment period with μm-PEA 600 mg twice a day. A neurophysiological examination based on repetitive nerve stimulation (RNS) of the masseteric and the axillary nerves was performed, and the quantitative MG (QMG) score was calculated in 22 MG patients every week in a three-week follow-up period. AChR antibody titer was investigated to analyze a possible immunomodulatory effect of PEA in MG patients. <p> Results: PEA had a significant effect on the QMG score (p=0.03418) and on RNS of the masseteric nerve (p=0.01763), thus indicating that PEA reduces the level of disability and decremental muscle response. Antibody titers did not change significantly after treatment. <p> Conclusion: According to our observations, μm-PEA as an add-on therapy could improve muscular response to fatigue in MG. The possible modulation of AChR currents as a means of eliciting a direct effect from PEA on the conformation of ACh receptors should be investigated. The co-role of cytokines also warrants an analysis. Given the rapidity and reversibility of the response, we suppose that PEA acts directly on AChR, though further studies are needed to confirm this hypothesis.


Sign in / Sign up

Export Citation Format

Share Document