scholarly journals Water masses distribution offshore the Sabrina Coast (East Antarctica)

2022 ◽  
Vol 14 (1) ◽  
pp. 65-78
Author(s):  
Manuel Bensi ◽  
Vedrana Kovačević ◽  
Federica Donda ◽  
Philip Edward O'Brien ◽  
Linda Armbrecht ◽  
...  

Abstract. Current glacier melt rates in West Antarctica substantially exceed those around the East Antarctic margin. The exception is Wilkes Land, where for example Totten Glacier underwent significant retreat between 2000 and 2012, underlining its sensitivity to climate change. This process is strongly influenced by ocean dynamics, which in turn changes in accordance with the evolution of the ice caps. Here, we present new oceanographic data (temperature, salinity, and dissolved oxygen) collected during austral summer 2017 offshore the Sabrina Coast (East Antarctica) from the continental shelf break to ca 3000 m depth. This area is characterized by very few oceanographic in situ observations. The main water masses of the study area, identified by analysing thermohaline properties, are the Antarctic Surface Water with potential temperature θ>-1.5 ∘C and salinity S<34.2 (σθ<27.55 kg m−3), the Winter Water with -1.92<θ<-1.75 ∘C and 34.0<S<34.5 (potential density, 27.55<σθ<27.7 kg m−3), the modified Circumpolar Deep Water with θ>0 ∘C and S>34.5 (σθ>27.7 kg m−3), and Antarctic Bottom Water with -0.50<θ<0 ∘C and 34.63<S<34.67 (27.83<σθ<27.85; neutral density γn>28.30 kg m−3). The latter is a mixture of dense waters from the Ross Sea and Adélie Land continental shelves. Such waters are influenced by the mixing processes they undergo as they move westward along the Antarctic margin, also interacting with the warmer Circumpolar Deep Water. The spatial distribution of water masses offshore the Sabrina Coast also appears to be strongly linked with the complex morpho-bathymetry of the slope and rise area, supporting the hypothesis that downslope processes contribute to shaping the architecture of the distal portion of the continental margin. Oceanographic data presented here can be downloaded from https://doi.org/10.25919/yyex-t381 (CSIRO; Van Graas, 2021).

2021 ◽  
Author(s):  
Manuel Bensi ◽  
Vedrana Kovačević ◽  
Federica Donda ◽  
Philip E. O'Brien ◽  
Linda Armbrecht ◽  
...  

Abstract. Current glacier melt rates in West Antarctica substantially exceed those around the East Antarctic margin. The exception is Wilkes Land where, e.g., Totten Glacier, underwent significant retreat between 2000 and 2012, underlining its sensitivity to climate change. This process is strongly influenced by ocean dynamics, which in turn changes in accordance with the evolution of the ice caps. Here, we present oceanographic data (temperature, salinity, density, dissolved oxygen) collected for the first time offshore the Sabrina Coast (East Antarctica), from the continental shelf break to ca 3000 m depth during austral summer 2017. The main water masses are identified by analysing thermohaline properties: the Antarctic Surface Water with θ > −1. 5 °C and S < 34.2 (σθ < 27.55 kg m−3), the Winter Water with −1.92 < θ < −1.75 °C and 34.0 < S < 34.5 (27.55 < σθ < 27.7 kg m−3), the modified Circumpolar Deep Water with θ > 0 °C and S > 34.5 (σθ > 27.7 kg m−3), and Antarctic Bottom Water with −0.50 < θ < 0 °C and 34.63 < S < 34.67 (27.83 < σθ < 27.85). The latter in this region is a mixture of dense waters originating from the Ross Sea and Adélie Land continental shelves, and is affected by the mixing process they undergo as they move westward along the Antarctic margin and interact with the locally formed dense waters, and with the warmer and saltier Circumpolar Deep Water. The spatial distribution of water masses offshore the Sabrina Coast also appears to be strongly linked with the complex morpho-bathymetry of the slope and rise area, supporting the hypothesis that downslope processes contribute to shaping the architecture of the distal portion of the continental margin.


2011 ◽  
Vol 8 (5) ◽  
pp. 1401-1413 ◽  
Author(s):  
M. González-Dávila ◽  
J. M. Santana-Casiano ◽  
R. A. Fine ◽  
J. Happell ◽  
B. Delille ◽  
...  

Abstract. Carbonate system variables were measured in the South Atlantic sector of the Southern Ocean along a transect from South Africa to the southern limit of the Antarctic Circumpolar Current (ACC) from February to March 2008. Eddies detached from the retroflection of the Agulhas Current increased the gradients observed along the fronts. Minima in the fugacity of CO2, fCO2, and maxima in pH on either side of the frontal zone were observed, noting that within the frontal zone fCO2 reached maximum values and pH was at a minimum. Vertical distributions of water masses were described by their carbonate system properties and their relationship to CFC concentrations. Upper Circumpolar Deep Water (UCDW) and Lower Circumpolar Deep Water (LCDW) offered pHT,25 values of 7.56 and 7.61, respectively. The UCDW also had higher concentrations of CFC-12 (>0.2 pmol kg−1) as compared to deeper waters, revealing that UCDW was mixed with recently ventilated waters. Calcite and aragonite saturation states (Ω) were also affected by the presence of these two water masses with high carbonate concentrations. The aragonite saturation horizon was observed at 1000 m in the subtropical area and north of the Subantarctic Front. At the position of the Polar Front, and under the influence of UCDW and LCDW, the aragonite saturation horizon deepened from 800 m to 1500 m at 50.37° S, and reached 700 m south of 57.5° S. High latitudes proved to be the most sensitive areas to predicted anthropogenic carbon increase. Buffer coefficients related to changes in [CO2], [H+] and Ω with changes in dissolved inorganic carbon (CT) and total alkalinity (AT) offered minima values in the Antarctic Intermediate Water and UCDW layers. These coefficients suggest that a small increase in CT will sharply decrease the status of pH and carbonate saturation. Here we present data that suggest that south of 55° S, surface water will be under-saturated with respect to aragonite within the next few decades.


1995 ◽  
Vol 7 (2) ◽  
pp. 159-170 ◽  
Author(s):  
Eugene W. Domack ◽  
Scott E. Ishman ◽  
Andrew B. Stein ◽  
Charles E. McClennen ◽  
A.J. Timothy Jull

Marine sediment cores were obtained from in front of the Müller Ice Shelf in Lallemand Fjord, Antarctic Peninsula in the austral summer of 1990–91. Sedimentological and geochemical data from these cores document a warm period that preceded the advance of the Müller Ice Shelf into Lallemand Fjord. The advance of the ice shelf is inferred from a reduction in the total organic carbon content and an increase in well-sorted, aeolian, sand in cores proximal to the present calving line. This sedimentological change is paralleled by a change in the foraminiferal assemblages within the cores. Advance of the ice shelf is indicated by a shift from assemblages dominated by calcareous benthic and planktonic forms to those dominated by agglutinated forms. A 14C chronology for the cores indicates that the advance of the Müller Ice Shelf took place c. 400 years ago, coincident with glacier advances in other high southern latitude sites during the onset of the Little Ice Age. Ice core evidence, however, documents this period as one of warmer temperatures for the Antarctic Peninsula. We suggest that the ice shelf advance was linked to the exclusion of circumpolar deep water from the fjord. This contributed to increased mass balance of the ice shelf system by preventing the rapid undermelt that is today associated with warm circumpolar deep water within the fjord. We also document the recent retreat of the calving line of the Müller Ice Shelf that is apparently in response to a recent (four decade long) warming trend along the western side of the Antarctic Peninsula.


2011 ◽  
Vol 8 (1) ◽  
pp. 435-462
Author(s):  
M. González-Dávila ◽  
J. M. Santana-Casiano ◽  
R. A. Fine ◽  
J. Happell ◽  
B. Delille ◽  
...  

Abstract. Carbonate system variables were measured in the South Atlantic sector of the Southern Ocean along a transect from South Africa to the southern limit of the Antarctic Circumpolar Current (ACC) in February–March 2008. Eddies detach from retroflection of the Agulhas Current located north of the Subantarctic Front (SAF). The eddies increase the gradients observed at the fronts so that minima in fCO2 and maxima in pH in situ on either side of the frontal zone are observed, while within the frontal zone fCO2 reached maximum values and pH in situ was a minimum. Mixing at the frontal zones, in particular where cyclonic rings were located, brought up CO2-rich water (low pH and high nutrient) that spread out the fronts where recent biological production favored by the nutrient input increases the pH in situ and decreases the fCO2 levels. Vertical distributions of water masses were described by their carbonate system properties and their relationship to CFC concentrations. Upper Circumpolar Deep Water (UCDW) and Lower Circumpolar Deep Water (LCDW) had pHT,25 values of 7.56 and 7.61, respectively. UCDW also had higher concentrations of CFC-12 (>0.2 pmol kg−1) as compared to deeper waters, revealing the mixing with recently ventilated waters. Calcite and aragonite saturation states (Ω) were also affected by the presence of these two water masses with high carbonate concentration. Ωarag = 1 was observed at 1000 m in the subtropical area and north of the SAF. At the position of the Polar front and under the influence of UCDW and LCDW Ωarag = 1 deepen from 600 m to 1500 m at 50.37° S, and it reaches to 700 m south of 57.5° S. High latitudes are the most sensitive areas under future anthropogenic carbon increase. Buffer coefficients related to changes in [CO2], [H+] and Ω with changes in CT and AT showed the minimum values are found in the Antarctic Intermediate Water (AAIW), and UCDW layers. These coefficients suggest that a small increase in CT will sharply decrease the pH and the carbonate saturation states. Here we present data that are used to suggest that south of 55° S by the year 2045 surface water will be undersaturated in aragonite.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 217
Author(s):  
Jiangping Zhu ◽  
Aihong Xie ◽  
Xiang Qin ◽  
Yetang Wang ◽  
Bing Xu ◽  
...  

The European Center for Medium-Range Weather Forecasts (ECMWF) released its latest reanalysis dataset named ERA5 in 2017. To assess the performance of ERA5 in Antarctica, we compare the near-surface temperature data from ERA5 and ERA-Interim with the measured data from 41 weather stations. ERA5 has a strong linear relationship with monthly observations, and the statistical significant correlation coefficients (p < 0.05) are higher than 0.95 at all stations selected. The performance of ERA5 shows regional differences, and the correlations are high in West Antarctica and low in East Antarctica. Compared with ERA5, ERA-Interim has a slightly higher linear relationship with observations in the Antarctic Peninsula. ERA5 agrees well with the temperature observations in austral spring, with significant correlation coefficients higher than 0.90 and bias lower than 0.70 °C. The temperature trend from ERA5 is consistent with that from observations, in which a cooling trend dominates East Antarctica and West Antarctica, while a warming trend exists in the Antarctic Peninsula except during austral summer. Generally, ERA5 can effectively represent the temperature changes in Antarctica and its three subregions. Although ERA5 has bias, ERA5 can play an important role as a powerful tool to explore the climate change in Antarctica with sparse in situ observations.


2021 ◽  
Author(s):  
Ling Du ◽  
Xubin Ni

&lt;p&gt;Water cycle have prevailed on upper ocean salinity acting as the climate change fingerprint in the numerous observation and simulation works. Water mass in the Southern Ocean accounted for the increasing importance associated with the heat and salt exchanges between Subantarctic basins and tropical oceans. The circumpolar deep water (CDW), the most extensive water mass in the Southern Ocean, plays an indispensable role in the formation of Antarctic Bottom Water. In our study, the observed CTDs and reanalysis datasets are examined to figure out the recent salinity changes in the three basins around the Antarctica. Significant surface salinity anomalies occurred in the South Indian/Pacific sectors south of 60&amp;#186;S since 2008, which are connected with the enhanced CDW incursion onto the Antarctic continental shelf. Saltier shelf water was found to expand northward from the Antarctica coast. Meanwhile, the freshening of Upper Circumpolar Deep Water(UCDW), salting and submergence of Subantarctic Mode Water(SAMW) were also clearly observed. The modified vertical salinity structures contributed to the deepen mixed layer and enhanced intermediate stratification between SAMW and UCDW. Their transport of salinity flux attributed to the upper ocean processes responding to the recent atmospheric circulation anomalies, such as the Antarctic Oscillation and Indian Ocean Dipole. The phenomena of SAMW and UCDW salinity anomalies illustrated the contemporaneous changes of the subtropical and polar oceans, which reflected the meridional circulation fluctuation. Salinity changes in upper southern ocean (&lt; 2000m) revealed the influence of global water cycle changes, from the Antarctic to the tropical ocean, by delivering anomalies from high- and middle-latitudes to low-latitudes oceans.&lt;/p&gt;


2019 ◽  
Vol 117 (2) ◽  
pp. 889-894
Author(s):  
Torben Struve ◽  
David J. Wilson ◽  
Tina van de Flierdt ◽  
Naomi Pratt ◽  
Kirsty C. Crocket

The Southern Ocean is a key region for the overturning and mixing of water masses within the global ocean circulation system. Because Southern Ocean dynamics are influenced by the Southern Hemisphere westerly winds (SWW), changes in the westerly wind forcing could significantly affect the circulation and mixing of water masses in this important location. While changes in SWW forcing during the Holocene (i.e., the last ∼11,700 y) have been documented, evidence of the oceanic response to these changes is equivocal. Here we use the neodymium (Nd) isotopic composition of absolute-dated cold-water coral skeletons to show that there have been distinct changes in the chemistry of the Southern Ocean water column during the Holocene. Our results reveal a pronounced Middle Holocene excursion (peaking ∼7,000–6,000 y before present), at the depth level presently occupied by Upper Circumpolar Deep Water (UCDW), toward Nd isotope values more typical of Pacific waters. We suggest that poleward-reduced SWW forcing during the Middle Holocene led to both reduced Southern Ocean deep mixing and enhanced influx of Pacific Deep Water into UCDW, inducing a water mass structure that was significantly different from today. Poleward SWW intensification during the Late Holocene could then have reinforced deep mixing along and across density surfaces, thus enhancing the release of accumulated CO2 to the atmosphere.


2020 ◽  
Vol 50 (2) ◽  
pp. 361-381 ◽  
Author(s):  
Esther Portela ◽  
Nicolas Kolodziejczyk ◽  
Christophe Maes ◽  
Virginie Thierry

AbstractUsing an Argo dataset and the ECCOv4 reanalysis, a volume budget was performed to address the main mechanisms driving the volume change of the interior water masses in the Southern Hemisphere oceans between 2006 and 2015. The subduction rates and the isopycnal and diapycnal water-mass transformation were estimated in a density–spiciness (σ–τ) framework. Spiciness, defined as thermohaline variations along isopycnals, was added to the potential density coordinates to discriminate between water masses spreading on isopycnal layers. The main positive volume trends were found to be associated with the Subantarctic Mode Waters (SAMW) in the South Pacific and South Indian Ocean basins, revealing a lightening of the upper waters in the Southern Hemisphere. The SAMW exhibits a two-layer density structure in which subduction and diapycnal transformation from the lower to the upper layers accounted for most of the upper-layer volume gain and lower-layer volume loss, respectively. The Antarctic Intermediate Waters, defined here between the 27.2 and 27.5 kg m−3 isopycnals, showed the strongest negative volume trends. This volume loss can be explained by their negative isopyncal transformation southward of the Antarctic Circumpolar Current into the fresher and colder Antarctic Winter Waters (AAWW) and northward into spicier tropical/subtropical Intermediate Waters. The AAWW is destroyed by obduction back into the mixed layer so that its net volume change remains nearly zero. The proposed mechanisms to explain the transformation within the Intermediate Waters are discussed in the context of Southern Ocean dynamics. The σ–τ decomposition provided new insight on the spatial and temporal water-mass variability and driving mechanisms over the last decade.


2015 ◽  
Vol 120 (4) ◽  
pp. 3098-3112 ◽  
Author(s):  
Laura Herraiz-Borreguero ◽  
Richard Coleman ◽  
Ian Allison ◽  
Stephen R. Rintoul ◽  
Mike Craven ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document