scholarly journals A 30-meter resolution national urban land-cover dataset of China, 2000–2015

Author(s):  
Wenhui Kuang ◽  
Shu Zhang ◽  
Xiaoyong Li ◽  
Dengsheng Lu

Abstract. Accurate urban land-cover datasets are essential for mapping urban environments. However, a series of national urban land-cover data covering more than 15 years that characterizes urban environments is relatively rare. Here we propose a hierarchical principle on remotely sensed urban land-use/cover classification for mapping intra-urban structure/component dynamics. China's Land Use/cover Dataset (CLUD) is updated, delineating the imperviousness, green surface, waterbody and bare land conditions in cities. A new data subset called CLUD-Urban is created from 2000 to 2015 at five-year intervals with a medium spatial resolution (30 m). The first step is a prerequisite to extract the vector boundaries covered with urban areas from CLUD. A new method is then proposed using logistic regression between urban impervious surface area (ISA) and the annual maximum Normalized Difference Vegetation Index (NDVI) value retrieved from Landsat images based on a big-data platform with Google Earth Engine. National ISA and urban green space (UGS) fraction datasets for China are generated at 30-meter resolution with five-year intervals from 2000 to 2015. The overall classification accuracy of national urban areas is 92 %. The root mean square error values of ISA and UGS fractions are 0.10 and 0.14, respectively. The datasets indicate that the total urban area of China was 6.28 × 104 km2 in 2015, with average fractions of 70.70 % and 26.54 % for ISA and UGS, respectively. The ISA and UGS increased between 2000 and 2015 with unprecedented annual rates of 1,311.13 km2/yr and 405.30 km2/yr, respectively. CLUD-Urban can be used to enhance our understanding of urbanization impacts on ecological and regional climatic conditions and urban dwellers' environments. CLUD-Urban can be applied in future researches on urban environmental research and practices in the future. The datasets can be downloaded from https://doi.org/10.5281/zenodo.2644932.

2020 ◽  
Vol 11 (5) ◽  
pp. 529-535
Author(s):  
Dan Abudu ◽  
Nigar Sultana Parvin ◽  
Geoffrey Andogah

Conventional approaches for urban land use land cover classification and quantification of land use changes have often relied on the ground surveys and urban censuses of urban surface properties. Advent of Remote Sensing technology supporting metric to centimetric spatial resolutions with simultaneous wide coverage, significantly reduced huge operational costs previously encountered using ground surveys. Weather, sensor’s spatial resolution and the complex compositions of urban areas comprising concrete, metallic, water, bare- and vegetation-covers, limits Remote Sensing ability to accurately discriminate urban features. The launch of Sentinel-1 Synthetic Aperture Radar, which operates at metric resolution and microwave frequencies evades the weather limitations and has been reported to accurately quantify urban compositions. This paper assessed the feasibility of Sentinel-1 SAR data for urban land use land cover classification by reviewing research papers that utilised these data. The review found that since 2014, 11 studies have specifically utilised the datasets.


Author(s):  
J. R. Bergado ◽  
C. Persello ◽  
A. Stein

Abstract. Updated information on urban land use allows city planners and decision makers to conduct large scale monitoring of urban areas for sustainable urban growth. Remote sensing data and classification methods offer an efficient and reliable way to update such land use maps. Features extracted from land cover maps are helpful on performing a land use classification task. Such prior information can be embedded in the design of a deep learning based land use classifier by applying a multitask learning setup—simultaneously solving a land use and a land cover classification task. In this study, we explore a fully convolutional multitask network to classify urban land use from very high resolution (VHR) imagery. We experimented with three different setups of the fully convolutional network and compared it against a baseline random forest classifier. The first setup is a standard network only predicting the land use class of each pixel in the image. The second setup is a multitask network that concatenates the land use and land cover class labels in the same output layer of the network while the other setup accept as an input the land cover predictions, predicted by a subpart of the network, concatenated to the original input image patches. The two deep multitask networks outperforms the other two classifiers by at least 30% in average F1-score.


2019 ◽  
Vol 11 (19) ◽  
pp. 5266 ◽  
Author(s):  
Fernando Chapa ◽  
Srividya Hariharan ◽  
Jochen Hack

Urbanization nowadays results in the most dynamic and drastic changes in land use/land cover, with a significant impact on the environment. A detailed analysis and assessment of this process is necessary to take informed actions to reduce its impact on the environment and human well-being. In most parts of the world, detailed information on the composition, structure, extent, and temporal changes of urban areas is lacking. The purpose of this study is to present a methodology to produce high-resolution land use/land cover maps by the use of free software and satellite imagery. These maps can help to understand dynamic urbanizations processes to plan, design, and coordinate sustainable urban development plans, especially in areas with limited resources and advancing environmental degradation. A series of high-resolution true color images provided by Google Earth Pro were used to do initial classifications with the Semi-Automatic Classification Plug-in in QGIS. Afterwards, a new methodology to improve the classification by the elimination of shadows and clouds, and a reduction of misclassifications through superimposition was applied. The classification was carried out for three urban areas in León, Nicaragua, with different degrees of urbanization for the years 2009, 2015, and 2018. Finally, the accuracy of the classification was analyzed using randomly defined validation polygons. The results are three sets of high-resolution land use/land cover maps of the initial and the improved classification, showing the detailed structures and temporal dynamics of urbanization. The average accuracy of classification reaches 74%, but up to 85% for the best classification. The results clearly identify advancing urbanization, the loss of vegetation and riparian zones, and threats to urban ecosystems. In general, the level of detail and simplicity of our methodology is a valuable tool to support sustainable urban management, although its application is not limited to these areas and can also be employed to track changes over time, providing therefore, relevant information to a wide range of decision-makers.


2021 ◽  
Vol 13 (1) ◽  
pp. 63-82
Author(s):  
Wenhui Kuang ◽  
Shu Zhang ◽  
Xiaoyong Li ◽  
Dengsheng Lu

Abstract. Accurate and timely maps of urban underlying land properties at the national scale are of significance in improving habitat environment and achieving sustainable development goals. Urban impervious surface (UIS) and urban green space (UGS) are two core components for characterizing urban underlying environments. However, the UIS and UGS are often mosaicked in the urban landscape with complex structures and composites. The “hard classification” or binary single type cannot be used effectively to delineate spatially explicit urban land surface property. Although six mainstream datasets on global or national urban land use and land cover products with a 30 m spatial resolution have been developed, they only provide the binary pattern or dynamic of a single urban land type, which cannot effectively delineate the quantitative components or structure of intra-urban land cover. Here we propose a new mapping strategy to acquire the multitemporal and fractional information of the essential urban land cover types at a national scale through synergizing the advantage of both big data processing and human interpretation with the aid of geoknowledge. Firstly, the vector polygons of urban boundaries in 2000, 2005, 2010, 2015 and 2018 were extracted from China's Land Use/cover Dataset (CLUD) derived from Landsat images. Secondly, the national settlement and vegetation percentages were retrieved using a sub-pixel decomposition method through a random forest algorithm using the Google Earth Engine (GEE) platform. Finally, the products of China's UIS and UGS fractions (CLUD-Urban) at a 30 m resolution were developed in 2000, 2005, 2010, 2015 and 2018. We also compared our products with six existing mainstream datasets in terms of quality and accuracy. The assessment results showed that the CLUD-Urban product has higher accuracies in urban-boundary and urban-expansion detection than other products and in addition that the accurate UIS and UGS fractions were developed in each period. The overall accuracy of urban boundaries in 2000–2018 are over 92.65 %; and the correlation coefficient (R) and root mean square errors (RMSEs) of UIS and UGS fractions are 0.91 and 0.10 (UIS) and 0.89 and 0.11 (UGS), respectively. Our result indicates that 71 % of pixels of urban land were mosaicked by the UIS and UGS within cities in 2018; a single UIS classification may highly increase the mapping uncertainty. The high spatial heterogeneity of urban underlying covers was exhibited with average fractions of 68.21 % for UIS and 22.30 % for UGS in 2018 at a national scale. The UIS and UGS increased unprecedentedly with annual rates of 1605.56 and 627.78 km2 yr−1 in 2000–2018, driven by fast urbanization. The CLUD-Urban mapping can fill the knowledge gap in understanding impacts of the UIS and UGS patterns on ecosystem services and habitat environments and is valuable for detecting the hotspots of waterlogging and improving urban greening for planning and management practices. The datasets can be downloaded from https://doi.org/10.5281/zenodo.4034161 (Kuang et al., 2020a).


Author(s):  
B. Bouchachi ◽  
Y. Zhong

Monitoring the Urban Land Cover/Land Use change detection is important as one of the main driving forces of environmental change because Urbanization is the biggest changes in form of Land, resulting in a decrease in cultivated areas. Using remote sensing ability to solve land resources problems. The purpose of this research is to map the urban areas at different times to monitor and predict possible urban changes, were studied the annual growth urban land during the last 29 years in Algiers City. Improving the productiveness of long-term training in land mapping, were have developed an approach by the following steps: 1) pre-processing for improvement of image characteristics; 2) extract training sample candidates based on the developed methods; and 3) Derive maps and analyzed of Algiers City on an annual basis from 1987 to 2016 using a Supervised Classifier Support Vector Machine (SVMs). Our result shows that the strategy of urban land followed in the region of Algiers City, developed areas mostly were extended to East, West, and South of Central Regions. The urban growth rate is linked with National Office of Statistics data. Future studies are required to understand the impact of urban rapid lands on social, economy and environmental sustainability, it will also close the gap in data of urbanism available, especially on the lack of reliable data, environmental and urban planning for each municipality in Algiers, develop experimental models to predict future land changes with statistically significant confidence.


2020 ◽  
Author(s):  
Wenhui Kuang ◽  
Shu Zhang ◽  
Xiaoyong Li ◽  
Dengsheng Lu

Abstract. Urban impervious surface area (UISA) and urban green space (UGS) are two core components of cities for characterizing urban environments. Although several global or national urban land use/cover products such as Globeland30 and FROM-GLC are available, they cannot effectively delineate the complex intra-urban land cover components. Here we proposed a new approach to map fractional UISA and UGS in China using Google Earth Engine (GEE) based on multiple data sources. The first step is to extract the vector boundaries of urban areas from China's Land Use/cover Dataset (CLUD). The UISA was retrieved using the logistic regression from the Landsat-derived annual maximum Normalized Difference Vegetation Index (NDVI). The UGS was developed through linear calibration between reference UGS from high spatial resolution image and the normalized NDVI. Thus, the China's UISA and UGS fraction datasets (CLUD-Urban) at 30-meter resolution are generated from 2000 to 2018. The overall accuracy of national urban areas is over 92 %. The root mean square errors of UISA and UGS fractions are 0.10 and 0.14, respectively. The datasets indicate that total urban area of China was 7.10 ×104 km2 in 2018, with average fractions of 70.70 % for UISA and 26.54 % for UGS. The UISA and UGS increased with unprecedented annual rates of 1,492.63 km2/yr and 400.43 km2/yr during 2000–2018. CLUD-Urban can enhance our understanding of urbanization impacts on ecological and urban dwellers’ environments, and can be used in such applications as urban planning, urban environmental studies and practices. The datasets can be downloaded from https://doi.org/10.5281/zenodo.3778424 (Kuang et al., 2020).


2013 ◽  
Vol 11 (2) ◽  
Author(s):  
Ahmad Nazri Muhamad Ludin ◽  
Norsiah Abd. Aziz ◽  
Nooraini Hj Yusoff ◽  
Wan Juliyana Wan Abd Razak

Land use planning plays a crucial role in creating a balance between the needs of society, physical development and the ecosystem. However, most often poor planning and displacement of land uses particularly in urban areas contribute to social ills such as drug abuse and criminal activities. This research explains the spatial relationship of drug abuse and other criminal activities on urban land use planning and their implications on the society at large. Spatial statistics was used to show patterns, trends and spatial relationships of crimes and land use planning. Data on crime incidents were obtained from the Royal Malaysia Police Department whilst cases of drug abuse were collected from the National Anti-Drug Agency (AADK). Analysis of the data together with digital land use maps produced by Arnpang Jaya Municipal Council, showed the distribution of crime incidents and drug abuse in the area. Findings of the study also indicated that, there was a strong relationship between petty crimes, drng abuse and land use patterns. These criminal activities tend to concentrate in residential and commercial areas of the study area.


Sign in / Sign up

Export Citation Format

Share Document