scholarly journals Short communication: A new tool to define multiscale bedform characteristics from bed elevation data

2021 ◽  
Author(s):  
Judith Zomer ◽  
Suleyman Naqshband ◽  
Ton Hoitink

Abstract. Systematic identification and characterization of bedforms from bathymetric data are crucial in many studies focused on fluvial processes. Automated and accurate processing of bed elevation data is challenging where dune fields are complex, irregular and, especially, where multiple scales co-exist. Here, we introduce a new tool to quantify dune properties from bathymetric data representing multiple dune scales. A first step in the procedure is to decompose the bathymetric data based on a LOESS algorithm. Steep dune lee side slopes are accounted for by implementing objective breaks in the algorithm, accounting for discontinuities in the bed level profiles, often occurring at the toe of the lee side slope of dunes. The steep lee slopes are then approximated by fitting a sigmoid function. Following the decomposition of the bathymetric data, bedforms are identified based on zero-crossing, and the relevant properties are calculated. The approach to decompose bedforms adopted in the presented tool is particularly applicable where secondary dunes are large and thus filtering could easily lead to undesired smoothing of the primary morphology. Application of the tool to two bathymetric maps demonstrates that the decomposition and identification are successful, as the lee side slopes are better preserved.

2012 ◽  
Vol 44 (1) ◽  
pp. 24-33 ◽  
Author(s):  
Nan Liu ◽  
Bang Xiao ◽  
Hong-Yan Ren ◽  
Zhong-Lin Tang ◽  
Kui Li

2014 ◽  
Vol 42 (12) ◽  
pp. 2002-2006 ◽  
Author(s):  
Yasuhiro Uno ◽  
Shotaro Uehara ◽  
Masakiyo Hosokawa ◽  
Teruko Imai

PLoS ONE ◽  
2014 ◽  
Vol 9 (7) ◽  
pp. e101431 ◽  
Author(s):  
Fan Mo ◽  
Alexander W. Wyatt ◽  
Yue Sun ◽  
Sonal Brahmbhatt ◽  
Brian J. McConeghy ◽  
...  

PLoS ONE ◽  
2013 ◽  
Vol 8 (6) ◽  
pp. e63949 ◽  
Author(s):  
Peter Arne Gerber ◽  
Peter Hevezi ◽  
Bettina Alexandra Buhren ◽  
Cynthia Martinez ◽  
Holger Schrumpf ◽  
...  

2017 ◽  
Vol 39 (10) ◽  
pp. 1047-1057 ◽  
Author(s):  
Bo Weng ◽  
Maoliang Ran ◽  
Bin Chen ◽  
Maisheng Wu ◽  
Fuzhi Peng ◽  
...  

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Xianhui Ning ◽  
Li Sun

Abstract Background Long non-coding RNAs (lncRNAs) structurally resemble mRNAs and exert crucial effects on host immune defense against pathogen infection. Japanese flounder (Paralichthys olivaceus) is an economically important marine fish susceptible to Vibrio anguillarum infection. To date, study on lncRNAs in flounder is scarce. Results Here, we reported the first systematic identification and characterization of flounder lncRNAs induced by V. anguillarum infection at different time points. A total of 2,368 lncRNAs were identified, 414 of which were differentially expressed lncRNAs (DElncRNAs) that responded significantly to V. anguillarum infection. For these DElncRNAs, 3,990 target genes (named DETGs) and 42 target miRNAs (named DETmiRs) were identified based on integrated analyses of lncRNA-mRNA and lncRNA-miRNA expressions, respectively. The DETGs were enriched in a cohort of functional pathways associated with immunity. In addition to modulating mRNAs, 36 DElncRNAs were also found to act as competitive endogenous RNAs (ceRNAs) that regulate 37 DETGs through 16 DETmiRs. The DETmiRs, DElncRNAs, and DETGs formed ceRNA regulatory networks consisting of 114 interacting DElncRNAs-DETmiRs-DETGs trinities spanning 10 immune pathways. Conclusions This study provides a comprehensive picture of lncRNAs involved in V. anguillarum infection. The identified lncRNAs and ceRNA networks add new insights into the anti-bacterial immunity of flounder.


Genes ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 8
Author(s):  
Cuicui Yu ◽  
Mei Rong ◽  
Yang Liu ◽  
Peiwen Sun ◽  
Yanhong Xu ◽  
...  

The heat shock protein 70 (HSP70) gene family perform a fundamental role in protecting plants against biotic and abiotic stresses. Aquilaria sinensis is a classic stress-induced medicinal plant, producing a valuable dark resin in a wood matrix, known as agarwood, in response to environmental stresses. The HSP70 gene family has been systematic identified in many plants, but there is no comprehensive analysis at the genomic level in A. sinensis. In this study, 15 putative HSP70 genes were identified in A. sinensis through genome-wide bioinformatics analysis. Based on their phylogenetic relationships, the 15 AsHSP70 were grouped into six sub-families that with the conserved motifs and gene structures, and the genes were mapped onto six separate linkage groups. A qRT-PCR analysis showed that the relative expression levels of all the AsHSP70 genes were up-regulated by heat stress. Subcellular localization of all HSP70s was predicted, and three were verified by transiently expressed in Arabidopsis protoplasts. Based on the expression profiles in different tissues and different layers treated with Agar-Wit, we predict AsHSP70 genes are involved in different stages of agarwood formation. The systematic identification and expression analysis of HSP70s gene family imply some of them may play important roles in the formation of agarwood. Our findings not only provide a foundation for further study their biological function in the later research in A. sinensis, but also provides a reference for the analysis of HSPs in other species.


Sign in / Sign up

Export Citation Format

Share Document