scholarly journals Dating and morpho-stratigraphy of uplifted marine terraces in the Makran subduction zone (Iran)

2019 ◽  
Vol 7 (1) ◽  
pp. 321-344 ◽  
Author(s):  
Raphaël Normand ◽  
Guy Simpson ◽  
Frédéric Herman ◽  
Rabiul Haque Biswas ◽  
Abbas Bahroudi ◽  
...  

Abstract. The western part of the Makran subduction zone (Iran) is currently experiencing active surface uplift, as attested by the presence of emerged marine terraces along the coast. To better understand the uplift recorded by these terraces, we investigated seven localities along the Iranian Makran and we performed radiocarbon, 230Th∕U and optically stimulated luminescence (OSL) dating of the layers of marine sediments deposited on top of the terraces. This enabled us to correlate the terraces regionally and to assign them to different Quaternary sea-level highstands. Our results show east–west variations in surface uplift rates mostly between 0.05 and 1.2 mm yr−1. We detected a region of anomalously high uplift rate, where two MIS 3 terraces are emerged, but we are uncertain how to interpret these results in a geologically coherent context. Although it is presently not clear whether the uplift of the terraces is linked to the occurrence of large megathrust earthquakes, our results highlight rapid surface uplift for a subduction zone context and heterogeneous accumulation of deformation in the overriding plate.

2018 ◽  
Author(s):  
Raphaël Normand ◽  
Guy Simpson ◽  
Frédéric Herman ◽  
Rabiul Haque Biswas ◽  
Abbas Bahroudi ◽  
...  

Abstract. The western part of the Makran subduction zone (Iran) has not experienced a great megathrust earthquake in recent human history, yet, the presence of emerged marine terraces along the coast indicates that the margin has been tectonically active during at least the late Quaternary. To better understand the surface deformation of this region, we mapped the terraces sequences of seven localities along the Iranian Makran. Additionnaly, we performed radiocarbon, 230Th/U and optically stimulated luminescence (OSL) dating of the layers of marine sediments deposited on top of the terraces. This enabled us to correlate the terraces regionally and to assign them to different Quaternary sea level highstands. Our results show east-west variations in surface uplift rates mostly between 0.05 and 1.2 mm y−1. We detected a region of anomalously high uplift rate, where two MIS 3 terraces are emerged, yet we are uncertain how to insert these results in a geologically coherent context. Although it is presently not clear whether the uplift of the terraces is linked with the occurrence of large megathrust earthquakes, our results highlight heterogeneous accumulation of deformation in the overriding plate.


2021 ◽  
Author(s):  
Luca C Malatesta ◽  
Noah J. Finnegan ◽  
Kimberly Huppert ◽  
Emily Carreño

<p>Marine terraces are a cornerstone for the study of paleo sea level and crustal deformation. Commonly, individual erosive marine terraces are attributed to unique sea level high-stands. This stems from early reasoning that marine platforms could only be significantly widened under moderate rates of sea level rise as at the beginning of an interglacial and preserved onshore by subsequent sea level fall. However, if marine terraces are only created during brief windows at the start of interglacials, this implies that terraces are unchanged over the vast majority of their evolution, despite an often complex submergence history during which waves are constantly acting on the coastline, regardless of the sea level stand.<span> </span></p><p>Here, we question the basic assumption that individual marine terraces are uniquely linked to distinct sea level high stands and highlight how a single marine terrace can be created By reoccupation of the same uplifting platform by successive sea level stands. We then identify the biases that such polygenetic terraces can introduce into relative sea level reconstructions and inferences of rock uplift rates from marine terrace chronostratigraphy.</p><p>Over time, a terrace’s cumulative exposure to wave erosion depends on the local rock uplift rate. Faster rock uplift rates lead to less frequent (fewer reoccupations) or even single episodes of wave erosion of an uplifting terrace and the generation and preservation of numerous terraces. Whereas slower rock uplift rates lead to repeated erosion of a smaller number of polygenetic terraces. The frequency and duration of terrace exposure to wave erosion at sea level depend strongly on rock uplift rate.</p><p>Certain rock uplift rates may therefore promote the generation and preservation of particular terraces (e.g. those eroded during recent interglacials). For example, under a rock uplift rate of ca. 1.2 mm/yr, Marine Isotope Stage (MIS) 5e (ca. 120 ka) would resubmerge a terrace eroded ca. 50 kyr earlier for tens of kyr during MIS 6d–e stages (ca. 190–170 ka) and expose it to further wave erosion at sea level. This reoccupation could accordingly promote the formation of a particularly wide or well planed terrace associated with MIS 5e with a greater chance of being preserved and identified. This effect is potentially illustrated by a global compilation of rock uplift rates derived from MIS 5e terraces. It shows an unusual abundance of marine terraces documenting uplift rates between 0.8 and 1.2 mm/yr, supporting the hypothesis that these uplift rates promote exposure of the same terrace to wave erosion during multiple sea level stands.</p><p>Hence, the elevations and widths of terraces eroded during specific sea level stands vary widely from site-to-site and depend on local rock uplift rate. Terraces do not necessarily correspond to an elevation close to that of the latest sea level high-stand but may reflect the elevation of an older, longer-lived, occupation. This leads to potential misidentification of terraces if each terrace in a sequence is assumed to form uniquely at successive interglacial high stands and to reflect their elevations.</p>


2018 ◽  
Vol 90 (2) ◽  
pp. 418-434 ◽  
Author(s):  
Daniel Moraetis ◽  
Frank Mattern ◽  
Andreas Scharf ◽  
Gianluca Frijia ◽  
Timothy M. Kusky ◽  
...  

AbstractThis work explores the uplift history of the best exposed marine terraces in the northeastern Arabian Peninsula (eastern Al Hajar Mountains). A multidisciplinary approach was employed, including a topographic survey, 14C dating, thin section studies, and scanning electron microscopy analyses. Six distinctive marine terraces with widths ranging from tenth of meters to kilometers and elevations from 5 to ~400 m were studied. These terraces record an along-strike heterogeneous uplift history, while they show temporally variable uplift rates ranging between 0.9 to 6.7 mm/yr, which correlates well with other published uplift rates of marine terraces of the eastern Arabian Peninsula. We attribute the variable uplift along strike of the terraces, to a combination of uplift mechanisms: (1) during early to mid-Miocene along deep-rooted reverse faults that bound large crustal-scale blocks, (2) Pliocene or post-Pliocene uplift on the outer wall of the forebulge of the lower Arabian Plate as it bends to enter the Zagros-Makran subduction zone, and (3) a possible slowdown of subduction for the past ~40 ka.


Author(s):  
Raphaël Normand ◽  
Guy Simpson ◽  
Frédéric Herman ◽  
Rabiul Haque Biswas ◽  
Abbas Bahroudi ◽  
...  

2021 ◽  
Author(s):  
◽  
Dee Ninis

<p>At the southern Hikurangi margin, the subduction interface between the Australian and Pacific plates, beneath the southern North Island of New Zealand, is ‘locked’. It has previously been estimated that sudden slip on this locked portion of the interface could result in a subduction zone or ‘megathrust’ earthquake of Mw 8.0-8.5 or larger. Historically, however, no significant (>Mw 7.2) subduction interface earthquake has occurred at the southern Hikurangi margin, and the hazard from subduction earthquakes to this region, which includes New Zealand’s capital city of Wellington, remains largely unknown.  Patterns of uplift at active margins can provide insight into subduction processes, including megathrust earthquakes. With the objectives to i) contribute to the understanding of partitioning of margin-parallel plate motion on to upper plate faults, and ii) provide insight into the relationship of permanent vertical deformation to subduction processes at the southern end of the Hikurangi margin, I investigate flights of late Pleistocene fluvial and marine terraces preserved across the lower North Island. Such geomorphic features, when constrained by numerical dating, provide a valuable set of data with which to quantify tectonic deformation - be they locally offset by a fault, or collectively uplifted across the margin.  Fault-offset fluvial terraces along the Hutt River, near Wellington, record dextral slip for the southern part of the Wellington Fault. From re-evaluated fault displacement measurements and new Optically Stimulated Luminescence (OSL) data, I estimate an average slip rate of 6.3 ± 1.9/1.2 mm/yr (2σ) during the last ~100 ka. However, slip on the Wellington Fault has not been steady throughout this time. During the Holocene, there was a phase of heightened ground rupture activity between ~8 and 10 ka, a period of relative quiescence between ~4.5 and 8 ka, and another period of heightened activity during the last ≤ 4.5 ka. Moreover, these results agree with independent paleoseismological evidence from other sites along the Wellington Fault for the timing of ground rupture events. The time-varying activity observed on the Wellington Fault may be regulated by stress interactions with other nearby upper plate active faults.  Net tectonic uplift of the southern Hikurangi margin is recorded by ancient emergent shore platforms preserved along the south coast of the North Island. I provide a new evaluation of the distribution and age of the Pleistocene marine terraces. Shore platform altitudes are accurately surveyed for the first time using Global Navigational Satellite Systems (GNSS). From these data I have determine the shore platform attitudes where they are preserved along the coast. The terraces are also dated, most for the first time, using OSL techniques. The most extensive Pleistocene terraces formed during Marine Isotope Stages (MIS) 5a, 5c, 5e and 7a. Because the ancient shorelines are now obscured by coverbed deposits, I use shore platform attitudes to reconstruct strandline elevations. These strandline elevations, corrected for sea level during their formative highstands, have been used to quantify rates of uplift across the southern Hikurangi margin.  In the forearc region of the Hikurangi margin, within ~70 km of the trough, uplift observed on the marine terraces along the Palliser Bay coast monotonically decreases away from the trough. The highest uplift rate of 1.7 ± 0.1 mm/yr is observed at the easternmost preserved terrace, near Cape Palliser, about 40 km from Hikurangi Trough. Further to the west, at Lake Ferry, uplift is 0.8 ± 0.1 mm/yr. The lowest rate of uplift, 0.2 ± 0.1 mm/yr, is observed at Wharekauhau, the westernmost marine terrace preserved on the Palliser Bay coast. Overall, the terraces are tilted towards the west, away from the trough, with older terraces exhibiting the most tilting. This long-wavelength pattern of uplift suggests that, in this forearc region of the margin, deep-seated processes, most likely subduction of a buoyant slab in combination with megathrust earthquakes, are the main contributors to permanent vertical deformation.  West of Palliser Bay, at a distance of >70 km from the Hikurangi Trough, vertical offsets on the marine terraces are evident across upper plate faults, most notably the Wairarapa and Ohariu Faults. The uplift rate at Baring Head, west and on the upthrown side of the Wairarapa Fault, is as much as 1.6 ± 0.1 mm/yr. At Tongue Point, where the Ohariu Fault offsets the marine terraces preserved there, uplift calculated from the western, upthrown side of the fault is 0.6 ± 0.1 mm/yr. These uplift rates suggest that, in the Axial Ranges, in addition to sediment underplating, movement on the major active upper plate faults also contributes to rock uplift.</p>


2021 ◽  
Author(s):  
Marco Meschis ◽  
Susanna Zerbini ◽  
Giovanni Lattanzi ◽  
Miriana Di Donato ◽  
Silvia Castellaro

&lt;p&gt;Geologic studies of preserved stairs-like uplifted marine terraces and continuous GPS data collected in subduction zones provide a unique opportunity to investigate, on different time scales, crustal deformation resulting from upper&amp;#8208;plate extension. The West Crati Fault in Calabria, southern Italy, is a normal fault located within the seismically extending upper plate above the Ionian subduction zone. It is of interest because a thorough comparison of the extension rates inferred from geologic and GPS data has not yet been performed. This E-dipping fault lies in an area where a few historical damaging earthquakes occurred, examples are those in 1184 (M 6.7) and 1638 (M 6.7). Fault slip-rates and earthquake recurrence intervals for the West Crati fault are still subject of debate. We investigated raised marine terraces along the strike of the fault, on its footwall over its tips, located above the Ionian subduction zone, to derive refined uplift rates and study the role that known extensional faults contribute to observed coastal uplift. We also estimated short-term vertical and horizontal movements on the hangingwall of this fault by analyzing the data of 7 permanent GPS stations located along the N-S oriented strike of this fault.&lt;/p&gt;&lt;p&gt;Our preliminary results demonstrate that (i) GIS-based elevations of Middle to Late Pleistocene marine terraces, as well as temporally constant uplift rates, vary along the strike of this fault, mapped on its footwall; (ii) rates of short-term vertical movements vary along the strike of this fault on its hangingwall. This confirms active deformation, on different time scales, along the E-dipping West Crati Fault, suggesting that the fault slip-rate governing seismic hazard has also been constant through time. Our preliminary results show the importance of mapping crustal deformation within the upper plate above subduction zones to avoid unreliable interpretations concerning the mechanism responsible for regional uplift.&lt;/p&gt;


2021 ◽  
Author(s):  
◽  
Dee Ninis

<p>At the southern Hikurangi margin, the subduction interface between the Australian and Pacific plates, beneath the southern North Island of New Zealand, is ‘locked’. It has previously been estimated that sudden slip on this locked portion of the interface could result in a subduction zone or ‘megathrust’ earthquake of Mw 8.0-8.5 or larger. Historically, however, no significant (>Mw 7.2) subduction interface earthquake has occurred at the southern Hikurangi margin, and the hazard from subduction earthquakes to this region, which includes New Zealand’s capital city of Wellington, remains largely unknown.  Patterns of uplift at active margins can provide insight into subduction processes, including megathrust earthquakes. With the objectives to i) contribute to the understanding of partitioning of margin-parallel plate motion on to upper plate faults, and ii) provide insight into the relationship of permanent vertical deformation to subduction processes at the southern end of the Hikurangi margin, I investigate flights of late Pleistocene fluvial and marine terraces preserved across the lower North Island. Such geomorphic features, when constrained by numerical dating, provide a valuable set of data with which to quantify tectonic deformation - be they locally offset by a fault, or collectively uplifted across the margin.  Fault-offset fluvial terraces along the Hutt River, near Wellington, record dextral slip for the southern part of the Wellington Fault. From re-evaluated fault displacement measurements and new Optically Stimulated Luminescence (OSL) data, I estimate an average slip rate of 6.3 ± 1.9/1.2 mm/yr (2σ) during the last ~100 ka. However, slip on the Wellington Fault has not been steady throughout this time. During the Holocene, there was a phase of heightened ground rupture activity between ~8 and 10 ka, a period of relative quiescence between ~4.5 and 8 ka, and another period of heightened activity during the last ≤ 4.5 ka. Moreover, these results agree with independent paleoseismological evidence from other sites along the Wellington Fault for the timing of ground rupture events. The time-varying activity observed on the Wellington Fault may be regulated by stress interactions with other nearby upper plate active faults.  Net tectonic uplift of the southern Hikurangi margin is recorded by ancient emergent shore platforms preserved along the south coast of the North Island. I provide a new evaluation of the distribution and age of the Pleistocene marine terraces. Shore platform altitudes are accurately surveyed for the first time using Global Navigational Satellite Systems (GNSS). From these data I have determine the shore platform attitudes where they are preserved along the coast. The terraces are also dated, most for the first time, using OSL techniques. The most extensive Pleistocene terraces formed during Marine Isotope Stages (MIS) 5a, 5c, 5e and 7a. Because the ancient shorelines are now obscured by coverbed deposits, I use shore platform attitudes to reconstruct strandline elevations. These strandline elevations, corrected for sea level during their formative highstands, have been used to quantify rates of uplift across the southern Hikurangi margin.  In the forearc region of the Hikurangi margin, within ~70 km of the trough, uplift observed on the marine terraces along the Palliser Bay coast monotonically decreases away from the trough. The highest uplift rate of 1.7 ± 0.1 mm/yr is observed at the easternmost preserved terrace, near Cape Palliser, about 40 km from Hikurangi Trough. Further to the west, at Lake Ferry, uplift is 0.8 ± 0.1 mm/yr. The lowest rate of uplift, 0.2 ± 0.1 mm/yr, is observed at Wharekauhau, the westernmost marine terrace preserved on the Palliser Bay coast. Overall, the terraces are tilted towards the west, away from the trough, with older terraces exhibiting the most tilting. This long-wavelength pattern of uplift suggests that, in this forearc region of the margin, deep-seated processes, most likely subduction of a buoyant slab in combination with megathrust earthquakes, are the main contributors to permanent vertical deformation.  West of Palliser Bay, at a distance of >70 km from the Hikurangi Trough, vertical offsets on the marine terraces are evident across upper plate faults, most notably the Wairarapa and Ohariu Faults. The uplift rate at Baring Head, west and on the upthrown side of the Wairarapa Fault, is as much as 1.6 ± 0.1 mm/yr. At Tongue Point, where the Ohariu Fault offsets the marine terraces preserved there, uplift calculated from the western, upthrown side of the fault is 0.6 ± 0.1 mm/yr. These uplift rates suggest that, in the Axial Ranges, in addition to sediment underplating, movement on the major active upper plate faults also contributes to rock uplift.</p>


Quaternary ◽  
2019 ◽  
Vol 2 (2) ◽  
pp. 21 ◽  
Author(s):  
Raphaël Normand ◽  
Guy Simpson ◽  
Frédéric Herman ◽  
Rabiul Haque Biswas ◽  
Abbas Bahroudi

The western Makran coast displays evidence of surface uplift since at least the Late Pleistocene, but it remains uncertain whether this displacement is accommodated by creep on the subduction interface, or in a series of large earthquakes. Here, we address this problem by looking at the short-term (Holocene) history of continental vertical displacements recorded in the geomorphology and sedimentary succession of the Makran beaches. In the region of Chabahar (Southern Iran), we study two bay-beaches through the description, measurement and dating of 13 sedimentary sections with a combination of radiocarbon and Optically Stimulated Luminescence (OSL) dating. Our results show that lagoonal settings dominate the early Holocene of both studied beach sections. A flooding surface associated with the Holocene maximum transgression is followed by a prograding sequence of tidal and beach deposits. Coastal progradation is evidenced in Pozm Bay, where we observe a rapid buildup of the beach ridge succession (3.5 m/years lateral propagation over the last 1950 years). Dating of Beris Beach revealed high rates of uplift, comparable to the rates obtained from the nearby Late Pleistocene marine terraces. A 3150-year-old flooding surface within the sedimentary succession of Chabahar Bay was possibly caused by rapid subsidence during an earthquake. If true, this might indicate that the Western Makran does produce large earthquakes, similar to those that have occurred further east in the Pakistani Makran.


Geology ◽  
2021 ◽  
Author(s):  
Luca C. Malatesta ◽  
Noah J. Finnegan ◽  
Kimberly L. Huppert ◽  
Emily I. Carreño

Marine terraces are a cornerstone for the study of paleo sea level and crustal deformation. Commonly, individual erosive marine terraces are attributed to unique sea-level high stands based on the reasoning that marine platforms could only be significantly widened at the beginning of an interglacial. However, this logic implies that wave erosion is insignificant at other times. We postulate that the erosion potential at a given bedrock elevation datum is proportional to the total duration of sea-level occupation at that datum. The total duration of sea-level occupation depends strongly on rock uplift rate. Certain rock uplift rates may promote the generation and preservation of particular terraces while others prevent them. For example, at rock uplift of ~1.2 mm/yr, the Marine Isotope Stage (MIS) 5e (ca. 120 ka) high stand reoccupies the elevation of the MIS 6d–e mid-stand, favoring creation of a wider terrace than at higher or lower rock uplift rates. Thus, misidentification of terraces can occur if each terrace in a sequence is assumed to form uniquely at successive interglacial high stands and to reflect their relative elevations. Developing a graphical proxy for the entire erosion potential of sea-level history allows us to address creation and preservation biases at different rock uplift rates.


Sign in / Sign up

Export Citation Format

Share Document