scholarly journals The <i>μ</i>Dose system: determination of environmental dose rates by combined alpha and beta counting – performance tests and practical experiences

Geochronology ◽  
2022 ◽  
Vol 4 (1) ◽  
pp. 1-31
Author(s):  
Thomas Kolb ◽  
Konrad Tudyka ◽  
Annette Kadereit ◽  
Johanna Lomax ◽  
Grzegorz Poręba ◽  
...  

Abstract. The μDose system is a recently developed analytical instrument applying a combined α- and β-sensitive scintillation technique for determining the radioactivity arising from the decay chains of 235U, 238U and 232Th as well as from the decay of 40K. The device was designed to meet the particular requirements of trapped charge dating methods and allows the assessment of environmental (i.e. low) levels of natural radionuclides. The μDose system was developed as a piece of low-cost laboratory equipment, but a systematic test of its performance is still pending. For the first time, we present results from a comprehensive performance test based on an inter-laboratory comparison. We compare the results obtained with μDose measurements with those from thick source alpha counting (TSAC), inductively coupled plasma optical emission spectrometry (ICP-OES) and low-level high-resolution gamma spectrometry (HRGS) applied in five participating laboratories. In addition, the reproducibility and accuracy of μDose measurements were tested on certified reference materials distributed by the International Atomic Energy Agency (IAEA; RGU-1, RGTh-1 and RGK-1) and on two loess standards (Nussy and Volkegem) frequently used in trapped charge dating studies. We compare μDose-based results for a total of 47 sediment samples with results previously obtained for these materials by well-established methods of dose rate determination. The investigated natural samples cover a great variety of environments, including fluvial, aeolian, littoral, colluvial and (geo-)archaeological sites originating from high and low mountain regions as well as from lowlands in tropical areas, drylands and mid-latitude zones of Europe, Africa, Australia, Central Asia and the Americas. Our results suggest the μDose system's capability of assessing low-level radionuclide contents with very good accuracy and precision comparable to well-established dosimetry methods. Based on the results of our comparative study and with respect to the practical experiences gained so far, the μDose system appears to be a promising tool for trapped charge dating studies.

2021 ◽  
Author(s):  
Thomas Kolb ◽  
Konrad Tudyka ◽  
Annette Kadereit ◽  
Johanna Lomax ◽  
Grzegorz Poręba ◽  
...  

Abstract. The µDose-system is a recently developed analytical instrument applying a combined α- and β-sensitive scintillation technique for determining the radioactivity arising from the decay chains of 235U, 238U and 232Th as well as from the decay of 40K. The device was designed to meet the particular requirements of trapped charge dating methods and allows the assessment of environmental (i.e. low) levels of natural radionuclides. The µDose-system was developed as a low-cost laboratory equipment, but a systematic test of its performance is still pending. For the first time, we present results from a comprehensive performance test based on an inter-laboratory comparison. We compare the results gained with µDose-measurements with those from thick source alpha counting (TSAC), inductively coupled plasma optical emission spectrometry (ICP-OES) and low-level high-resolution gamma spectrometry (HRGS) applied in five participating laboratories. In addition, the reproducibility and accuracy of µDose-measurements were tested on certified reference materials distributed by the International Atomic Energy Agency (IAEA; RGU-1, RGTh-1 and RGK-1) and on two loess standards (Nussy and Volkegem) frequently used in trapped charge dating studies. We compare µDose-based results for a total of 47 sediment samples with results previously obtained for these materials by well-established methods of dose rate determination. The investigated natural samples cover a great variety of environments, including fluvial, aeolian, littoral, colluvial and (geo-)archaeological sites originating from high- and low-mountain regions as well as from lowlands in tropical areas, drylands and mid-latitude zones of Europe, Africa, Australia, Central Asia and the Americas. Our results suggest the µDose-system’s capability of assessing low-level radionuclide contents with very good accuracy and precision comparable to well-established dosimetry methods. Based on the results of our comparative study and with respect to the practical experiences gained so far, the µDose-system appears to be a promising tool for trapped charge dating studies.


2016 ◽  
Vol 76 (4) ◽  
pp. 871-877 ◽  
Author(s):  
E. Silva ◽  
Z. C. V. Viana ◽  
N. F. A. Souza ◽  
M. G. A. Korn ◽  
V. L. C. S. Santos

Abstract Concentrations of ten elements (Cd, Cr, Cu, Fe, Ni, Pb, Se, Sr, V and Zn) were determinate in muscle tissues of 13 fish species from Aratu Bay, Bahia, Brazil by inductively coupled plasma optical emission spectrometry. The accuracy and precision of our results were checked by using two certified reference materials: BCR-422 cod muscle and SRM 1566b oyster tissue. The average trace element concentrations in the fish species varied in the following ranges, in μg g–1: 0.03-0.8 for Cr; 2.0-33.7 for Cu, 2.4-135.1 for Fe, 1.6-25.6 for Se; 1.6-35.1 for Sr; and 2.8-40.5 for Zn. The Diaptereus rhombeus (carapeba) specie presented the highest concentrations of Se, Cu and Fe. Chromium and Se were present at levels above the limit of tolerance allowed by the National Agency of Sanitary Vigilance (ANVISA). The results were also evaluated using the multivariate analysis techniques: principal component analysis (PCA) and hierarchical cluster analysis (HCA).


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Alessandra S. T. Ferreira ◽  
Juliana Naozuka ◽  
Gislayne A. R. Kelmer ◽  
Pedro V. Oliveira

Cooking is imperative for beans owing to the presence of compounds that can negatively affect nutritional value. Additionally, the heating of beans can increase protein digestibility and induce desirable sensory properties. However, cooking also causes considerable changes in the composition of numerous chemical constituents, including amino acids, vitamins, and minerals. For this, effects of domestic cooking on the essential element concentrations in various beans species (Phaseolus vulgaris L.) were investigated using jalo, fradinho, rajado, rosinha, bolinha, black, and common species. Elemental determination was made with flame atomic absorption spectrometry and inductively coupled plasma optical emission spectrometry after sample digestion in a closed-vessel microwave oven using a diluted oxidant mixture. Analytical methods were evaluated with an addition and recovery test and analysis of certified reference materials (apple and citrus leaves). Ca, Cu, K, and Mg were present mainly in rajado, Cu in jalo, Fe in black, S and Zn in fradinho, and P in rosinha species. Thermal treatment did not affect Cu, Fe, S, and Zn concentrations, but it increased Ca, K, Mg, P, and Zn concentrations in jalo and black species. Ca concentration decreased in fradinho and rajado species, as did Fe concentration in jalo and rajado species.


2021 ◽  
Vol 5 (1) ◽  
pp. 19-25
Author(s):  
Mariele Samuel Nascimento ◽  
Gabriel Toneto Druzian ◽  
Rochele Sogari Picoloto ◽  
Paola Azevedo Mello ◽  
Erico M. M. Flores

A method based on microwave-induced combustion (MIC) was applied for medicinal plants digestion allowing further chlorine determination by potentiometry using ion-selective electrode (ISE). Sample masses ranging from 500 to 1000 mg were evaluated for MIC digestion. Water and 10, 25, 50, and 100 mmol/L NH4OH were investigated as absorbing solutions. The accuracy of the proposed method was evaluated by using certified reference materials (CRMs), by recovery tests (500 µg/g), and also by comparison with the results obtained by inductively coupled plasma optical emission spectrometry (ICP-OES) after microwave-assisted alkaline extraction (MAE). Using water or NH4OH solutions (10 to 100 mmol/L), recoveries close to 100% and relative standard deviation lower than 5% were obtained. Results were in agreement with CRMs values (better than 95%) and also with those values obtained by using the MAE method. The main advantage of the proposed method was the complete combustion of high sample mass (1000 mg) resulting in low quantification limit (12.5 µg/g) and chlorine determination at low concentration by ISE. Another advantage of the proposed method was the high chlorine stability in digests (up to 30 days of storage) even using water as absorbing solution, which is in agreement with green analytical chemistry recommendations. Finally, the proposed MIC method was applied for commercial medicinal plants and the chlorine concentration was in the range of 59.4 ± 1.4 to 2038 ± 70 µg/g. The proposed MIC method was considered suitable for quality control for chlorine determination in medicinal plants.


2004 ◽  
Vol 87 (1) ◽  
pp. 151-156 ◽  
Author(s):  
Carmen S Kira ◽  
Franca D Maio ◽  
Vera A Maihara

Abstract A fast procedure was developed for determination of Ca, Cr, Cu, Fe, K, Mg, Mn, Na, P, and Zn in milk samples. This procedure consisted of a partial digestion with hydrochloric acid on a hot plate. The results obtained were compared with 3 other digestion procedures (dry ashing and 2 microwave digestions). All the procedures showed similar precision levels, with coefficients of variation &lt;10% for most analyzed elements. Accuracy was evaluated by using certified reference materials, and the values obtained were within the confidence intervals for these products. The results obtained were not considered statistically different. The partial digestion on a hot plate with HCl can be very practical for laboratories with relatively large numbers of sample analyses.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Mónica Gisel Arellano-Sánchez ◽  
Christine Devouge-Boyer ◽  
Marie Hubert-Roux ◽  
Carlos Afonso ◽  
Mélanie Mignot

AbstractIn this study, seven pretreatment methods for chromium speciation in tanned leather were evaluated: acidic mineralization, ethylenediaminetetraacetic acid (EDTA) extraction, diethylenetriaminepentaacetic acid (DTPA) extraction, alkaline extraction (NH4OH), ammonium nitrate extraction (NH4NO3), water extraction, and phosphate buffer extraction. Acidic mineralization permitted the decomposition of the organic matter and ensured the complete digestion of leathers, giving access to the total content of chromium in each sample using inductively coupled plasma-atomic emission spectrometry (ICP-AES). From all the extractant media tested, EDTA proved to be the most efficient, allowing the extraction of Cr(VI) and Cr(III) as a Cr(III)-EDTA complex, quantitatively. Method validation is presented for EDTA extraction and direct mineralization. For the EDTA extraction, method detection limit (MDL) and method quantification limit (MQL) for total Cr in leather were 3.4 ppb and 11.2 ppb (µg of total Cr per L of extraction solution), respectively. Due to the lack of leather certified reference materials (CRMs) for Cr(VI), accuracy was evaluated by spiking leather samples with a Cr(VI) solution. The spike recovery of EDTA microwave assisted extraction ranged from 91.0 to 108.6%. Interday precision was also evaluated and all variation coefficients were below 5%, for both mineralization and EDTA extraction. This article provides an efficient procedure to extract quantitatively chromium from leather, while maintaining the speciation, which can be further followed by ion chromatography-inductively coupled plasma-mass spectrometry (IC-ICP-MS).


2017 ◽  
Vol 100 (6) ◽  
pp. 1879-1884 ◽  
Author(s):  
Manuela Ruiz-de-Cenzano ◽  
Arancha Rochina-Marco ◽  
Óscar López-Salazar ◽  
Maria Luisa Cervera ◽  
Miguel de la Guardia

Abstract Children’s fast food menus, including hamburgers served with french fries, dessert, and a soft drink, were analyzed to obtain the mineral profile of trace elements. The developed analytical methodology involved sample digestion under pressure inside a microwave oven with a mixture of HNO3 and H2O2 and inductively coupled plasma-optical emission spectrometry. The method was validated by carrying out the analysis of certified reference materials (NIST 1570a spinach leaves, NCS ZC73016 chicken, and NIST 1568a rice flour) and using recovery experiments. Repeatability was verified by analyzing replicate samples. Twenty-six elements were studied, 12 of which—aluminum, barium, calcium, copper, iron, potassium, lithium, magnesium, manganese, sodium, strontium, and zinc—were quantitatively determined. Results were compared with other studies of fast food and children’s menus published in the literature, and the nutritional value of samples was assessed with dietary intake guidelines.


Química Nova ◽  
2021 ◽  
Author(s):  
Ana Santos ◽  
Liz Santos ◽  
Lorena Santos ◽  
Emmanuelle Silva ◽  
João Santos ◽  
...  

In this work, multivariate optimization techniques were applied to develop an acid digestion procedure in digester block using “cold finger” as reflux system to determine minerals in almond pulp samples by inductively coupled plasma optical emission spectrometry. Two-level full factorial design and Box-Behnken design were applied to evaluate and optimize the factors involved in the acid digestion process. In both experimental designs, Function D and Function MR multiple responses were used to establish the method condition for all analytes and with greater digestion efficiency. Two apple and spinach leaves certified reference materials were analyzed to confirm the proposed method accuracy. The digestion efficiency was evaluated by residual carbon content which showed 1.32-1.77% range. The concentration values found for each element in almond pulp collected in Salvador, Bahia, Brazil in mg 100 g-1 were: 3.08 (Ca), 0.209 (Cu), 0.407 (Fe), 356 (K), 21.5 (Mg), 0.096 (Mn), 34.4 (P) and 0.289 (Zn). The developed method was simple and efficient for almond pulp mineral composition evaluation. This unconventional fruit has nutritional relevance with future application for new food recipes and pharmaceutical products formulation.


Sign in / Sign up

Export Citation Format

Share Document