scholarly journals Effect of horizontal resolution on the simulation of tropical cyclones in the Chinese Academy of Sciences FGOALS-f3 climate system model

2021 ◽  
Vol 14 (10) ◽  
pp. 6113-6133
Author(s):  
Jinxiao Li ◽  
Qing Bao ◽  
Yimin Liu ◽  
Lei Wang ◽  
Jing Yang ◽  
...  

Abstract. The effects of horizontal resolution on the simulation of tropical cyclones were studied using the Chinese Academy of Sciences Flexible Global Ocean–Atmosphere–Land System Finite-Volume version 3 (FGOALS-f3) climate system model from the High-Resolution Model Intercomparison Project (HighResMIP) for the Coupled Model Intercomparison Project phase 6 (CMIP6). Both the low-resolution (about 100 km resolution) FGOALS-f3 model (FGOALS-f3-L) and the high-resolution (about 25 km resolution) FGOALS-f3 (FGOALS-f3-H) models were used to achieve the standard Tier 1 experiment required by HighResMIP. FGOALS-f3-L and FGOALS-f3-H have the same model parameterizations with the exactly the same parameters. The only differences between the two models are the horizontal resolution and the time step. The performance of FGOALS-f3-H and FGOALS-f3-L in simulating tropical cyclones was evaluated using observations. FGOALS-f3-H (25 km resolution) simulated more realistic distributions of the formation, movement and intensity of the climatology of tropical cyclones than FGOALS-f3-L at 100 km resolution. Although the number of tropical cyclones increased by about 50 % at the higher resolution and better matched the observed values in the peak month, both FGOALS-f3-L and FGOALS-f3-H appear to replicate the timing of the seasonal cycle of tropical cyclones. The simulated average and interannual variabilities of the number of tropical cyclones and the accumulated cyclone energy were both significantly improved from FGOALS-f3-L to FGOALS-f3-H over most of the ocean basins. The characteristics of tropical cyclones (e.g., the average lifetime, the wind–pressure relationship and the horizontal structure) were more realistic in the simulation using the high-resolution model. The possible physical linkage between the performance of the tropical cyclone simulation and the horizontal resolution were revealed by further analyses. The improvement in the response between the El Niño–Southern Oscillation and the number of tropical cyclones and the accumulated cyclone energy in FGOALS-f3 contributed to the realistic simulation of tropical cyclones. The genesis potential index and the vorticity, relative humidity, maximum potential intensity and the wind shear terms were used to diagnose the effects of resolution. We discuss the current insufficiencies and future directions of improvement for the simulation of tropical cyclones and the potential applications of the FGOALS-f3-H model in the subseasonal to seasonal prediction of tropical cyclones.

2021 ◽  
Author(s):  
Jinxiao Li ◽  
Qing Bao ◽  
Yimin Liu ◽  
Lei Wang ◽  
Jing Yang ◽  
...  

Abstract. The effects of horizontal resolution on the simulation of tropical cyclones were studied using the Chinese Academy of Sciences FGOALS-f3 climate system model from the High-Resolution Model Intercomparison Project (HighResMIP) for the Coupled Model Intercomparison Project Phase 6 (CMIP6). Both the low-resolution (approximately 100 km resolution) FGOALS-f3 model (FGOALS-f3-L) and the high-resolution (approximately 25 km resolution) FGOALS-f3 (FGOALS-f3-H) model were used to achieve the standard Tier1 experiment required by the HighResMIP. FGOALS-f3-L and FGOALS-f3-H have the same model parameterizations with exactly the same parameters. The only differences between the two models are the horizontal resolution and the time step. The performance of FGOALS-f3-H and FGOALS-f3-L in simulating tropical cyclones was evaluated with the observation firstly. FGOALS-f3-H (25 km resolution) simulated more realistic distributions of the formation, movement and intensity of the climatology of tropical cyclones than FGOALS-f3-L at 100 km resolution. The seasonal cycles of the number of tropical cyclones increased by about 50 % at the higher resolution and better matched the observed values in the peak month, especially in the eastern Pacific, northern Atlantic, southern Indian and southern Pacific oceans. The simulated variabilities of the number of tropical cyclones and the accumulated cyclone energy were both significantly improved from FGOALS-f3-L to FGOALS-f3-H over most of the ocean basins on the interannual timescale. The characteristics of the tropical cyclones (e.g., the average lifetime, the wind–pressure relationship and the horizontal structure) were more realistic in the simulation using the high-resolution model. The possible physical linkage between the performance of the tropical cyclone simulation and the horizontal resolution were revealed by further analyses. The improvement in the Madden–Julian oscillation from FGOALS-f3-H contributed to the realistic simulation of tropical cyclones. The genesis potential index and the vorticity, relative humidity, maximum potential intensity and the wind shear terms were used to diagnose the effects of the resolution. The current insufficiencies and future directions of improvement for the simulation of tropical cyclones and the potential applications of the FGOALS-f3-H model in the sub-seasonal to seasonal prediction of tropical cyclones are discussed.


2016 ◽  
Author(s):  
R. J. Haarsma ◽  
M. Roberts ◽  
P. L. Vidale ◽  
C. A. Senior ◽  
A. Bellucci ◽  
...  

Abstract. Robust projections and predictions of climate variability and change, particularly at regional scales, rely on the driving processes being represented with fidelity in model simulations. The role of enhanced horizontal resolution in improved process representation in all components of the climate system is of growing interest, particularly as some recent simulations suggest the possibility for significant changes in both large-scale aspects of circulation, as well as improvements in small-scale processes and extremes. However, such high resolution global simulations at climate time scales, with resolutions of at least 50 km in the atmosphere and 0.25° in the ocean, have been performed at relatively few research centers and generally without overall coordination, primarily due to their computational cost. Assessing the robustness of the response of simulated climate to model resolution requires a large multi-model ensemble using a coordinated set of experiments. The Coupled Model Intercomparison Project 6 (CMIP6) is the ideal framework within which to conduct such a study, due to the strong link to models being developed for the CMIP DECK experiments and other MIPs. Increases in High Performance Computing (HPC) resources, as well as the revised experimental design for CMIP6, now enables a detailed investigation of the impact of increased resolution up to synoptic weather scales on the simulated mean climate and its variability. The High Resolution Model Intercomparison Project (HighResMIP) presented in this paper applies, for the first time, a multi-model approach to the systematic investigation of the impact of horizontal resolution. A coordinated set of experiments has been designed to assess both a standard and an enhanced horizontal resolution simulation in the atmosphere and ocean. The set of HighResMIP experiments is divided into three tiers consisting of atmosphere-only and coupled runs and spanning the period 1950-2050, with the possibility to extend to 2100, together with some additional targeted experiments. This paper describes the experimental set-up of HighResMIP, the analysis plan, the connection with the other CMIP6 endorsed MIPs, as well as the DECK and CMIP6 historical simulation. HighResMIP thereby focuses on one of the CMIP6 broad questions: “what are the origins and consequences of systematic model biases?”, but we also discuss how it addresses the World Climate Research Program (WCRP) grand challenges.


2016 ◽  
Vol 9 (11) ◽  
pp. 4185-4208 ◽  
Author(s):  
Reindert J. Haarsma ◽  
Malcolm J. Roberts ◽  
Pier Luigi Vidale ◽  
Catherine A. Senior ◽  
Alessio Bellucci ◽  
...  

Abstract. Robust projections and predictions of climate variability and change, particularly at regional scales, rely on the driving processes being represented with fidelity in model simulations. The role of enhanced horizontal resolution in improved process representation in all components of the climate system is of growing interest, particularly as some recent simulations suggest both the possibility of significant changes in large-scale aspects of circulation as well as improvements in small-scale processes and extremes. However, such high-resolution global simulations at climate timescales, with resolutions of at least 50 km in the atmosphere and 0.25° in the ocean, have been performed at relatively few research centres and generally without overall coordination, primarily due to their computational cost. Assessing the robustness of the response of simulated climate to model resolution requires a large multi-model ensemble using a coordinated set of experiments. The Coupled Model Intercomparison Project 6 (CMIP6) is the ideal framework within which to conduct such a study, due to the strong link to models being developed for the CMIP DECK experiments and other model intercomparison projects (MIPs). Increases in high-performance computing (HPC) resources, as well as the revised experimental design for CMIP6, now enable a detailed investigation of the impact of increased resolution up to synoptic weather scales on the simulated mean climate and its variability. The High Resolution Model Intercomparison Project (HighResMIP) presented in this paper applies, for the first time, a multi-model approach to the systematic investigation of the impact of horizontal resolution. A coordinated set of experiments has been designed to assess both a standard and an enhanced horizontal-resolution simulation in the atmosphere and ocean. The set of HighResMIP experiments is divided into three tiers consisting of atmosphere-only and coupled runs and spanning the period 1950–2050, with the possibility of extending to 2100, together with some additional targeted experiments. This paper describes the experimental set-up of HighResMIP, the analysis plan, the connection with the other CMIP6 endorsed MIPs, as well as the DECK and CMIP6 historical simulations. HighResMIP thereby focuses on one of the CMIP6 broad questions, “what are the origins and consequences of systematic model biases?”, but we also discuss how it addresses the World Climate Research Program (WCRP) grand challenges.


2019 ◽  
Vol 49 (5) ◽  
pp. 1159-1181 ◽  
Author(s):  
Christopher Danek ◽  
Patrick Scholz ◽  
Gerrit Lohmann

AbstractThe influence of a high horizontal resolution (5–15 km) on the general circulation and hydrography in the North Atlantic is investigated using the Finite Element Sea Ice–Ocean Model (FESOM). We find a stronger shift of the upper-ocean circulation and water mass properties during the model spinup in the high-resolution model version compared to the low-resolution (~1°) control run. In quasi equilibrium, the high-resolution model is able to reduce typical low-resolution model biases. Especially, it exhibits a weaker salinification of the North Atlantic subpolar gyre and a reduced mixed layer depth in the Labrador Sea. However, during the spinup adjustment, we see that initially improved high-resolution features partially reduce over time: the strength of the Atlantic overturning and the path of the North Atlantic Current are not maintained, and hence hydrographic biases known from low-resolution ocean models return in the high-resolution quasi-equilibrium state. We identify long baroclinic Rossby waves as a potential cause for the strong upper-ocean adjustment of the high-resolution model and conclude that a high horizontal resolution improves the state of the modeled ocean but the model integration length should be chosen carefully.


2015 ◽  
Vol 28 (13) ◽  
pp. 5134-5149 ◽  
Author(s):  
Ronald van Haren ◽  
Reindert J. Haarsma ◽  
Geert Jan Van Oldenborgh ◽  
Wilco Hazeleger

Abstract In this study, the authors investigate the effect of GCM spatial resolution on modeled precipitation over Europe. The objectives of the analysis are to determine whether climate models have sufficient spatial resolution to have an accurate representation of the storm tracks that affect precipitation. They investigate if there is a significant statistical difference in modeled precipitation between a medium-resolution (~112-km horizontal resolution) and a high-resolution (~25-km horizontal resolution) version of a state-of-the-art AGCM (EC-EARTH), if either model resolution gives a better representation of precipitation in the current climate, and what processes are responsible for the differences in modeled precipitation. The authors find that the high-resolution model gives a more accurate representation of northern and central European winter precipitation. The medium-resolution model has a larger positive bias in precipitation in most of the northern half of Europe. Storm tracks are better simulated in the high-resolution model, providing for a more accurate horizontal moisture transport and moisture convergence. Using a decomposition of the precipitation difference between the medium- and high-resolution model in a part related and a part unrelated to a difference in the distribution of vertical atmospheric velocity, the authors find that the smaller precipitation bias in central and northern Europe is largely unrelated to a difference in vertical velocity distribution. The smaller precipitation amount in these areas is in agreement with less moisture transport over this area in the high-resolution model. In areas with orography the change in vertical velocity distribution is found to be more important.


2006 ◽  
Vol 19 (11) ◽  
pp. 2584-2596 ◽  
Author(s):  
Jeffrey T. Kiehl ◽  
Christine A. Shields ◽  
James J. Hack ◽  
William D. Collins

Abstract The climate sensitivity of the Community Climate System Model (CCSM) is described in terms of the equilibrium change in surface temperature due to a doubling of carbon dioxide in a slab ocean version of the Community Atmosphere Model (CAM) and the transient climate response, which is the surface temperature change at the point of doubling of carbon dioxide in a 1% yr−1 CO2 simulation with the fully coupled CCSM. For a fixed atmospheric horizontal resolution across model versions, we show that the equilibrium sensitivity has monotonically increased across CSM1.4, CCSM2, to CCSM3 from 2.01° to 2.27° to 2.47°C, respectively. The transient climate response for these versions is 1.44° to 1.09° to 1.48°C, respectively. Using climate feedback analysis, it is shown that both clear-sky and cloudy-sky processes have contributed to the changes in transient climate response. The dependence of these sensitivities on horizontal resolution is also explored. The equilibrium sensitivity of the high-resolution (T85) version of CCSM3 is 2.71°C, while the equilibrium response for the low-resolution model (T31) is 2.32°C. It is shown that the shortwave cloud response of the high-resolution version of the CCSM3 is anomalous compared to the low- and moderate-resolution versions.


2021 ◽  
Vol 14 (5) ◽  
pp. 2977-3006
Author(s):  
Tongwen Wu ◽  
Rucong Yu ◽  
Yixiong Lu ◽  
Weihua Jie ◽  
Yongjie Fang ◽  
...  

Abstract. BCC-CSM2-HR is a high-resolution version of the Beijing Climate Center (BCC) Climate System Model (T266 in the atmosphere and 1/4∘ latitude × 1/4∘ longitude in the ocean). Its development is on the basis of the medium-resolution version BCC-CSM2-MR (T106 in the atmosphere and 1∘ latitude × 1∘ longitude in the ocean) which is the baseline for BCC participation in the Coupled Model Intercomparison Project Phase 6 (CMIP6). This study documents the high-resolution model, highlights major improvements in the representation of atmospheric dynamical core and physical processes. BCC-CSM2-HR is evaluated for historical climate simulations from 1950 to 2014, performed under CMIP6-prescribed historical forcing, in comparison with its previous medium-resolution version BCC-CSM2-MR. Observed global warming trends of surface air temperature from 1950 to 2014 are well captured by both BCC-CSM2-MR and BCC-CSM2-HR. Present-day basic atmospheric mean states during the period from 1995 to 2014 are then evaluated at global scale, followed by an assessment on climate variabilities in the tropics including the tropical cyclones (TCs), the El Niño–Southern Oscillation (ENSO), the Madden–Julian Oscillation (MJO), and the quasi-biennial oscillation (QBO) in the stratosphere. It is shown that BCC-CSM2-HR represents the global energy balance well and can realistically reproduce the main patterns of atmospheric temperature and wind, precipitation, land surface air temperature, and sea surface temperature (SST). It also improves the spatial patterns of sea ice and associated seasonal variations in both hemispheres. The bias of the double intertropical convergence zone (ITCZ), obvious in BCC-CSM2-MR, almost disappears in BCC-CSM2-HR. TC activity in the tropics is increased with resolution enhanced. The cycle of ENSO, the eastward propagative feature and convection intensity of MJO, and the downward propagation of QBO in BCC-CSM2-HR are all in a better agreement with observations than their counterparts in BCC-CSM2-MR. Some imperfections are, however, noted in BCC-CSM2-HR, such as the excessive cloudiness in the eastern basin of the tropical Pacific with cold SST biases and the insufficient number of tropical cyclones in the North Atlantic.


Atmosphere ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 376 ◽  
Author(s):  
Chengwu Zhao ◽  
Junqiang Song ◽  
Hongze Leng ◽  
Juan Zhao

Precise center-detection of tropical cyclones (TCs) is critical for dynamic analysis in high resolution model data. The existence of both smaller scale perturbations and larger scale circulations could reduce the accuracy of center positioning. In this study, an objective center-finding algorithm is developed based on a two-dimensional Fourier filter and a vorticity centroid algorithm. This proposed algorithm is able to automatically adjust its parameters according to the scale of the target vortex instead of using artificially prescribed parameters in previous research. What’s more, this new algorithm has been optimized and validated by a hundred idealized vortexes with different sizes and small-scale perturbations. A high-resolution simulation of Typhoon Soudelor (2015) was used to evaluate the performance of the new algorithm, and the proposed objective center-finding algorithm was found able to detect a precise and reliable center.


2018 ◽  
Author(s):  
Manu Anna Thomas ◽  
Abhay Devasthale ◽  
Torben Koenigk ◽  
Klaus Wyser ◽  
Malcolm Roberts ◽  
...  

Abstract. This study evaluates the impact of atmospheric horizontal resolution on the representation of cloud radiative effects (CREs) in an ensemble of global climate model simulations following the protocols of the High Resolution Model Intercomparison Project (HighResMIP). We compare results from four European modelling centres, each of which provides data from "standard" and "high" resolution model configurations. Simulated radiative fluxes are compared with observation-based estimates derived from the Clouds and Earth's Radiant Energy System (CERES) dataset. Model CRE biases are evaluated using both conventional statistics (e.g. time and spatial averages) and after conditioning on the phase of two modes of internal climate variability, namely the El Niño and Southern Oscillation (ENSO) and the North Atlantic Oscillation (NAO). Simulated top-of-atmosphere (TOA) and surface CREs show large biases over the polar regions, particularly over regions where seasonal sea-ice variability is strongest. Increasing atmospheric resolution does not significantly improve these biases. The spatial structure of the cloud radiative response to ENSO and NAO variability is simulated reasonably well by all model configurations considered in this study. However, it is difficult to identify a systematic impact of atmospheric resolution on the associated CRE errors. Mean absolute CRE errors conditioned on ENSO phase are relatively large (5–10 W/m2) and show differences between models. We suggest this is a consequence of differences in the parameterization of SW radiative transfer and the treatment of cloud optical properties rather than a result of differences in resolution. In contrast, mean absolute CRE errors conditioned on NAO phase are generally smaller (0–2 W/m2) and more similar across models. Although the regional details of CRE biases show some sensitivity to atmospheric resolution within a particular model, it is difficult to identify patterns that hold across all models. This apparent insensitivity to increased atmospheric horizontal resolution indicates that physical parameterizations play a dominant role in determining the behaviour of cloud-radiation feedbacks. However, we note that these results are obtained from atmosphere-only simulations and the impact of changes in atmospheric resolution may be different in the presence of coupled climate feedbacks.


Sign in / Sign up

Export Citation Format

Share Document