scholarly journals Implementing the Water, HEat and Transport model in GEOframe (WHETGEO-1D v.1.0): algorithms, informatics, design patterns, open science features, and 1D deployment

2022 ◽  
Vol 15 (1) ◽  
pp. 75-104
Author(s):  
Niccolò Tubini ◽  
Riccardo Rigon

Abstract. This paper presents WHETGEO and its 1D deployment: a new physically based model simulating the water and energy budgets in a soil column. The purpose of this contribution is twofold. First, we discuss the mathematical and numerical issues involved in solving the Richardson–Richards equation, conventionally known as the Richards equation, and the heat equation in heterogeneous soils. In particular, for the Richardson–Richards equation (R2) we take advantage of the nested Newton–Casulli–Zanolli (NCZ) algorithm that ensures the convergence of the numerical solution in any condition. Second, starting from numerical and modelling needs, we present the design of software that is intended to be the first building block of a new customizable land-surface model that is integrated with process-based hydrology. WHETGEO is developed as an open-source code, adopting the object-oriented paradigm and a generic programming approach in order to improve its usability and expandability. WHETGEO is fully integrated into the GEOframe/OMS3 system, allowing the use of the many ancillary tools it provides. Finally, the paper presents the 1D deployment of WHETGEO, WHETGEO-1D, which has been tested against the available analytical solutions presented in the Appendix.

2021 ◽  
Author(s):  
Niccolò Tubini ◽  
Riccardo Rigon

Abstract. This paper presents WHETGEO and its 1D deployment, a new, physically based model simulating the water and energy budgets in a soil column. The purpose of this contribution is twofold. First, we discuss the mathematical and numerical issues involved in solving the Richardson-Richards equation, conventionally known as Richards' equation, and the heat equation in heterogeneous soils. In particular, for the Richardson-Richards equation (R2) we take advantage of the nested Newton-Casulli-Zanolli (NCZ) algorithm that ensures the convergence of the numerical solution in any condition. Second, starting from numerical and modelling needs, we present the design of a software that is intended to be the first building block of a new, customisable, land-surface model that is integrated with process-based hydrology. WHETGEO is developed as an open-source code, adopting the Object-Oriented paradigm and a generic programming approach in order to improve its usability and expandability. WHETGEO is fully integrated in the GEOframe/OMS3 system allowing the use of the many ancillary tools it provides. Finally the paper presents the 1D deployment of WHETGEO, WHETGEO-1D, which has been tested against the available analytical solutions presented in Appendix.


2018 ◽  
Author(s):  
Chunjing Qiu ◽  
Dan Zhu ◽  
Philippe Ciais ◽  
Bertrand Guenet ◽  
Shushi Peng ◽  
...  

Abstract. The importance of northern peatlands in the global carbon cycle has recently been recognized, especially for long-term changes. Yet, the complex interactions between climate and peatland hydrology, carbon storage and area dynamics make it challenging to represent these systems in land surface models. This study describes how peatland are included as an independent sub-grid hydrological soil unit (HSU) into the ORCHIDEE-MICT land surface model. The peatland soil column in this tile is characterized by multi-layered vertical water and carbon transport, and peat-specific hydrological properties. A cost-efficient TOPMODEL approach is implemented to simulate the dynamics of peatland area, calibrated by present-day wetland areas that are regularly inundated or subject to shallow water tables. The model is tested across a range of northern peatland sites and for gridded simulations over the Northern Hemisphere (> 30° N). Simulated northern peatland area (3.9 million km2), peat carbon stock (463 PgC) and peat depth are generally consistent with observed estimates of peatland area (3.4–4.0 million km2), peat carbon (270–540 PgC) and data compilations of peat core depths. Our results show that both net primary production (NPP) and heterotrophic respiration (HR) of northern peatlands increased over the past century in response to CO2 and climate change. NPP increased more rapidly than HR, and thus net ecosystem production (NEP) exhibited a positive trend, contributing a cumulative carbon storage of 11.13 Pg C since 1901, most of it being realized after the 1950s.


Atmosphere ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 465
Author(s):  
Bernard Cappelaere ◽  
Denis Feurer ◽  
Théo Vischel ◽  
Catherine Ottlé ◽  
Hassane Bil-Assanou Issoufou ◽  
...  

In distributed land surface modeling (LSM) studies, uncertainty in the rainfields that are used to force models is a major source of error in predicted land surface response variables. This is particularly true for applications in the African Sahel region, where weak knowledge of highly time/space-variable convective rainfall in a poorly monitored region is a considerable obstacle to such developments. In this study, we used a field-based stochastic rainfield generator to analyze the propagation of the rainfall uncertainty through a distributed land surface model simulating water and energy fluxes in Sahelian ecosystems. Ensemble time/space rainfields were generated from field observations of the local AMMA-CATCH-Niger recording raingauge network. The rainfields were then used to force the SEtHyS-Savannah LSM, yielding an ensemble of time/space simulated fluxes. Through informative graphical representations and innovative diagnosis metrics, these outputs were analyzed to separate the different components of flux variability, among which was the uncertainty represented by ensemble-wise variability. Scale dependence was analyzed for each flux type in the water and energy budgets, producing a comprehensive picture of uncertainty propagation for the various flux types, with its relationship to intrinsic space/time flux variability. The study was performed over a 2530 km2 domain over six months, covering an entire monsoon season and the subsequent dry-down, using a kilometer/daily base resolution of analysis. The newly introduced dimensionless uncertainty measure, called the uncertainty coefficient, proved to be more effective in describing uncertainty patterns and relationships than a more classical measure based on variance fractions. Results show a clear scaling relationship in uncertainty coefficients between rainfall and the dependent fluxes, specific to each flux type. These results suggest a higher sensitivity to rainfall uncertainty for hydrological than for agro-ecological or meteorological applications, even though eddy fluxes do receive a substantial part of that source uncertainty.


2017 ◽  
Author(s):  
Thibaud Thonat ◽  
Marielle Saunois ◽  
Philippe Bousquet ◽  
Isabelle Pison ◽  
Zeli Tan ◽  
...  

Abstract. Understanding the recent evolution of methane emissions in the Arctic is necessary to interpret the global methane cycle. Emissions are affected by significant uncertainties and are sensitive to climate change, leading to potential feedbacks. A polar version of the CHIMERE chemistry-transport model is used to simulate the evolution of tropospheric methane in the Arctic during 2012, including all known regional anthropogenic and natural sources. CHIMERE simulations are compared to atmospheric continuous observations at six measurement sites in the Arctic region. In winter, the Arctic is dominated by anthropogenic emissions; emissions from continental seepages and oceans, including from the East Siberian Arctic Shelf, can contribute significantly in more limited areas. In summer, emissions from wetland and freshwater sources dominate across the whole region. The model is able to reproduce the seasonality and synoptic variations of methane measured at the different sites. We find that all methane sources significantly affect the measurements at all stations at least at the synoptic scale, except for biomass burning; this indicates the relevance of continuous observations to gain a mechanistic understanding of Arctic methane sources. Sensitivity tests reveal that the choice of the land surface model used to prescribe wetland emissions can be critical in correctly representing methane concentrations. Also testing different freshwater emission inventories leads to large differences in modelled methane. Attempts to include methane sinks (OH oxidation and soil uptake) reduced the model bias relative to observed atmospheric CH4. The study illustrates how multiple sources, having different spatiotemporal dynamics and magnitudes, jointly influence the overall Arctic methane budget, and highlights ways towards further improved assessments.


2020 ◽  
Author(s):  
Anthony Bernus ◽  
Catherine Ottle ◽  
Nina Raoult

<p>Lakes play a major role on local climate and boundary layer stratification. At global scale, they have been shown to have an impact on the energy budget, (see for example Le Moigne et al., 2016 or Bonan, 1995 ) . To represent the energy budget of lakes at a global scale, the FLake (Mironov et al, 2008) lake model has been coupled to the ORCHIDEE land surface model - the continental part of the IPSL earth system model. By including Flake in ORCHIDEE, we aim to improve the representation of land surface temperature and heat fluxes. Using the standard CMIP6 configuration of ORCHIDEE,  two 40-year simulations were generated (one coupled with FLake and one without) using the CRUJRA meteorological forcing data at a spatial resolution of 0.5°. We compare land surface temperatures and heat fluxes from the two ORCHIDEE simulations and assess the impacts of lakes on surface energy budgets. MODIS satellite land surface temperature products will be used to validate the simulations. We expect a better fit between the simulated land surface temperature and the MODIS data when the FLake configuration is used. The preliminary results of the comparison will be presented.</p>


2017 ◽  
Vol 17 (13) ◽  
pp. 8371-8394 ◽  
Author(s):  
Thibaud Thonat ◽  
Marielle Saunois ◽  
Philippe Bousquet ◽  
Isabelle Pison ◽  
Zeli Tan ◽  
...  

Abstract. Understanding the recent evolution of methane emissions in the Arctic is necessary to interpret the global methane cycle. Emissions are affected by significant uncertainties and are sensitive to climate change, leading to potential feedbacks. A polar version of the CHIMERE chemistry-transport model is used to simulate the evolution of tropospheric methane in the Arctic during 2012, including all known regional anthropogenic and natural sources, in particular freshwater emissions which are often overlooked in methane modelling. CHIMERE simulations are compared to atmospheric continuous observations at six measurement sites in the Arctic region. In winter, the Arctic is dominated by anthropogenic emissions; emissions from continental seepages and oceans, including from the East Siberian Arctic Shelf, can contribute significantly in more limited areas. In summer, emissions from wetland and freshwater sources dominate across the whole region. The model is able to reproduce the seasonality and synoptic variations of methane measured at the different sites. We find that all methane sources significantly affect the measurements at all stations at least at the synoptic scale, except for biomass burning. In particular, freshwater systems play a decisive part in summer, representing on average between 11 and 26 % of the simulated Arctic methane signal at the sites. This indicates the relevance of continuous observations to gain a mechanistic understanding of Arctic methane sources. Sensitivity tests reveal that the choice of the land-surface model used to prescribe wetland emissions can be critical in correctly representing methane mixing ratios. The closest agreement with the observations is reached when using the two wetland models which have emissions peaking in August–September, while all others reach their maximum in June–July. Such phasing provides an interesting constraint on wetland models which still have large uncertainties at present. Also testing different freshwater emission inventories leads to large differences in modelled methane. Attempts to include methane sinks (OH oxidation and soil uptake) reduced the model bias relative to observed atmospheric methane. The study illustrates how multiple sources, having different spatiotemporal dynamics and magnitudes, jointly influence the overall Arctic methane budget, and highlights ways towards further improved assessments.


2020 ◽  
Vol 14 (8) ◽  
pp. 2581-2595 ◽  
Author(s):  
Bin Cao ◽  
Stephan Gruber ◽  
Donghai Zheng ◽  
Xin Li

Abstract. ERA5-Land (ERA5L) is a reanalysis product derived by running the land component of ERA5 at increased resolution. This study evaluates ERA5L soil temperature in permafrost regions based on observations and published permafrost products. We find that ERA5L overestimates soil temperature in northern Canada and Alaska but underestimates it in mid–low latitudes, leading to an average bias of −0.08 ∘C. The warm bias of ERA5L soil is stronger in winter than in other seasons. As calculated from its soil temperature, ERA5L overestimates active-layer thickness and underestimates near-surface (<1.89 m) permafrost area. This is thought to be due in part to the shallow soil column and coarse vertical discretization of the land surface model and to warmer simulated soil. The soil temperature bias in permafrost regions correlates well with the bias in air temperature and with maximum snow height. A review of the ERA5L snow parameterization and a simulation example both point to a low bias in ERA5L snow density as a possible cause for the warm bias in soil temperature. The apparent disagreement of station-based and areal evaluation techniques highlights challenges in our ability to test permafrost simulation models. While global reanalyses are important drivers for permafrost simulation, we conclude that ERA5L soil data are not well suited for informing permafrost research and decision making directly. To address this, future soil temperature products in reanalyses will require permafrost-specific alterations to their land surface models.


Author(s):  
J. F. González-Rouco ◽  
N. J. Steinert ◽  
E. García-Bustamante ◽  
S. Hagemann ◽  
P. de Vrese ◽  
...  

AbstractThe representation of the thermal and hydrological states in Land Surface Models is important for a realistic simulation of land-atmosphere coupling processes. The available evidence indicates that the simulation of subsurface thermodynamics in Earth System Models is inaccurate due to a zero-heat-flux bottom boundary condition being imposed too close to the surface. In order to assess the influence of soil model depth on the simulated terrestrial energy and subsurface thermal state, sensitivity experiments have been carried out in piControl, historical and RCP scenarios. A deeper bottom boundary condition placement has been introduced into the JSBACH land surface model by enlarging the vertical stratification from 5 to 12 layers, thereby expanding its depth from 9.83 to 1416.84 m. The model takes several hundred years to reach an equilibrium state in stand-alone piControl simulations. A depth of 100 m is necessary, and 300 m recommendable, to handle the warming trends in historical and scenario simulations. Using a deep bottom boundary, warming of the soil column is reduced by 0.5 to 1.5 K in scenario simulations over most land areas, with the largest changes occurring in northern high latitudes, consistent with polar amplification. Energy storage is 3 to 5 times larger in the deep than in the shallow model and increases progressively with additional soil layers until the model depth reaches about 200 m. While the contents of Part I focus on the sensitivity of subsurface thermodynamics to enlarging the space for energy, Part II (Steinert et al. 2021) addresses the sensitivity to changing the space for water and improving hydrological and phase-change interactions.


2009 ◽  
Vol 13 (2) ◽  
pp. 163-181 ◽  
Author(s):  
P. Quintana Seguí ◽  
E. Martin ◽  
F. Habets ◽  
J. Noilhan

Abstract. The hydrometeorological model SAFRAN-ISBA-MODCOU (SIM) computes water and energy budgets on the land surface and riverflows and the level of several aquifers at the scale of France. SIM is composed of a meteorological analysis system (SAFRAN), a land surface model (ISBA), and a hydrogeological model (MODCOU). In this study, an exponential profile of hydraulic conductivity at saturation is introduced to the model and its impact analysed. It is also studied how calibration modifies the performance of the model. A very simple method of calibration is implemented and applied to the parameters of hydraulic conductivity and subgrid runoff. The study shows that a better description of the hydraulic conductivity of the soil is important to simulate more realistic discharges. It also shows that the calibrated model is more robust than the original SIM. In fact, the calibration mainly affects the processes related to the dynamics of the flow (drainage and runoff), and the rest of relevant processes (like evaporation) remain stable. It is also proven that it is only worth introducing the new empirical parameterization of hydraulic conductivity if it is accompanied by a calibration of its parameters, otherwise the simulations can be degraded. In conclusion, it is shown that the new parameterization is necessary to obtain good simulations. Calibration is a tool that must be used to improve the performance of distributed models like SIM that have some empirical parameters.


Sign in / Sign up

Export Citation Format

Share Document