scholarly journals A novel model–data fusion approach to terrestrial carbon cycle reanalysis across the contiguous U.S using SIPNET and PEcAn state data assimilation system v. 1.7.2

2021 ◽  
Author(s):  
Hamze Dokoohaki ◽  
Bailey D. Morrison ◽  
Ann Raiho ◽  
Shawn P. Serbin ◽  
Michael Dietze

Abstract. The ability to monitor, understand, and predict the dynamics of the terrestrial carbon cycle requires the capacity to robustly and coherently synthesize multiple streams of information that each provide partial information about different pools and fluxes. In this study, we introduce a new terrestrial carbon cycle data assimilation system, built on the PEcAn model-data eco-informatics system, and its application for the development of a proof-of-concept carbon "reanalysis" product that harmonizes carbon pools (leaf, wood, soil) and fluxes (GPP, Ra, Rh, NEE) across the contiguous United States from 1986–2019. We first calibrated this system against plant trait and flux tower Net Ecosystem Exchange (NEE) using a novel emulated hierarchical Bayesian approach. Next, we extended the Tobit-Wishart Ensemble Filter (TWEnF) State Data Assimilation (SDA) framework, a generalization of the common Ensemble Kalman Filter which accounts for censored data and provides a fully Bayesian estimate of model process error, to a regional-scale system with a calibrated localization. Combined with additional workflows for propagating parameter, initial condition, and driver uncertainty, this represents the most complete and robust uncertainty accounting available for terrestrial carbon models. Our initial reanalysis was run on an irregular grid of ~500 points selected using a stratified sampling method to efficiently capture environmental heterogeneity. Remotely sensed observations of aboveground biomass (Landsat LandTrendr) and LAI (MODIS MOD15) were sequentially assimilated into the SIPNET model. Reanalysis soil carbon, which was indirectly constrained based on modeled covariances, showed general agreement with SoilGrids, an independent soil carbon data product. Reanalysis NEE, which was constrained based on posterior ensemble weights, also showed good agreement with eddy flux tower NEE and reduced RMSE compared to the calibrated forecast. Ultimately, PEcAn's carbon cycle reanalysis provides a scalable framework for harmonizing multiple data constraints and providing a uniform synthetic platform for carbon monitoring, reporting, and verification (MRV) and accelerating terrestrial carbon cycle research.

2017 ◽  
Author(s):  
Marko Scholze ◽  
Michael Buchwitz ◽  
Wouter Dorigo ◽  
Luis Guanter ◽  
Shaun Quegan

Abstract. The global carbon cycle is an important component of the Earth system and it interacts with the hydrological, energy and nutrient cycles as well as ecosystem dynamics. A better understanding of the global carbon cycle is required for improved projections of climate change including corresponding changes in water and food resources and for the verification 5 of measures to reduce anthropogenic greenhouse gas emissions. An improved understanding of the carbon cycle can be achieved by model-data fusion or data assimilation systems, which integrate observations relevant to the carbon cycle into coupled carbon, water, energy and nutrient models. Hence, the ingredients for such systems are a carbon cycle model, an algorithm for the assimilation, and systematic and 10 well error-characterized observations relevant to the carbon cycle. Relevant observations for assimilation include various in-situ measurements in the atmosphere (e.g. concentrations of CO2 and other gases) and on land (e.g. fluxes of carbon water and energy, carbon stocks) as well as remote sensing observations (e.g. atmospheric composition, vegetation and surface properties).We briefly review the different existing data assimilation techniques and contrast them to model 15 benchmarking and evaluation efforts (which also rely on observations). A common requirement for all assimilation techniques is a full description of the observational data properties. Uncertainty estimates of the observations are as important as the observations themselves because they similarly determine the outcome of such assimilation systems. Hence, this article reviews the requirements of data assimilation systems on observations and provides a non-exhaustive overview of current 20 observations and their uncertainties for use in terrestrial carbon cycle data assimilation. We report on progress since the review of model-data synthesis in terrestrial carbon observations by Raupach et al. (2005) emphasising the rapid advance in relevant space-based observations.


2005 ◽  
Vol 19 (2) ◽  
pp. n/a-n/a ◽  
Author(s):  
P. J. Rayner ◽  
M. Scholze ◽  
W. Knorr ◽  
T. Kaminski ◽  
R. Giering ◽  
...  

2020 ◽  
Author(s):  
Mousong Wu ◽  
Marko Scholze ◽  
Fei Jiang ◽  
Hengmao Wang ◽  
Wenxin Zhang ◽  
...  

<p>The terrestrial carbon cycle is an important part of the global carbon budget due to its large gross exchange fluxes with the atmosphere and their sensitivity to climate change. Terrestrial biosphere models show large uncertainties in estimating carbon fluxes, which impacts global carbon budget assessments. The land surface carbon cycle is tightly controlled by soil moisture through plant physiological processes. In this context, accurate soil moisture data will improve the modeling of carbon fluxes in a model-data fusion framework. We employ the Carbon Cycle Data Assimilation System (CCDAS) to assimilate 36 years (1980-2015) of surface soil moisture data as provided by the ESA CCI in combination with atmospheric CO<sub>2</sub> concentration observations at global scale. We will present the methods used for assimilating long-term remotely sensed soil moisture into the terrestrial biosphere model, and demonstrate the importance of soil moisture in modeling ecosystem carbon cycle processes. We will also investigate the impacts of soil moisture on the terrestrial carbon cycle during climate extremes at various scales.</p>


2016 ◽  
Author(s):  
G. J. Schürmann ◽  
T. Kaminski ◽  
C. Köstler ◽  
N. Carvalhais ◽  
M. Voßbeck ◽  
...  

Abstract. We describe the Max Planck Institute Carbon Cycle Data Assimilation System (MPI-CCDAS) built around the tangent-linear version of the land surface scheme of the MPI-Earth System Model v1 (JSBACH). The simulated terrestrial biosphere processes (phenology and carbon balance) were constrained by observations of the fraction of photosynthetically active radiation (TIP-FAPAR product) and by observations of atmospheric CO2 at a global set of monitoring stations for the years 2005–2009. The system successfully, and computationally efficiently, improved average foliar area and northern extra-tropical seasonality of foliar area when constrained by TIP-FAPAR. Global net and gross carbon fluxes were improved when constrained by atmospheric CO2, although the system tended to underestimate tropical productivity. Assimilating both data streams jointly allowed the MPI-CCDAS to match both observations (TIP-FAPAR and atmospheric CO2) equally well as the single data stream assimilation cases, therefore overall increasing the appropriateness of the resultant parameter values and biosphere dynamics. Our study thus highlights the role of the TIP-FAPAR product in stabilising the underdetermined atmospheric inversion problem and demonstrates the value of multiple-data stream assimilation for the simulation of terrestrial biosphere dynamics. The constraint on regional gross and net CO2 flux patterns is limited through the parametrisation of the biosphere model. We expect improvement on that aspect through a refined initialisation strategy and inclusion of further biosphere observations as constraints.


Sign in / Sign up

Export Citation Format

Share Document