scholarly journals Do surface lateral flows matter for data assimilation of soil moisture observations into hyperresolution land models?

2020 ◽  
Author(s):  
Yohei Sawada

Abstract. It is expected that hyperresolution land modeling substantially innovates the simulation of terrestrial water, energy, and carbon cycles. The major advantage of hyperresolution land models against conventional one-dimensional land surface models is that hyperresolution land models can explicitly simulate lateral water flows. Despite many efforts on data assimilation of hydrological observations into those hyperresolution land models, how surface water flows driven by local topography matter for data assimilation of soil moisture observations has not been fully clarified. Here I perform two minimalist synthetic experiments where soil moisture observations are assimilated into an integrated surface-groundwater land model by an ensemble Kalman filter. I discuss how differently the ensemble Kalman filter works when surface lateral flows are switched on and off. A horizontal background error covariance provided by overland flows is important to adjust the unobserved state variables (pressure head and soil moisture) and parameters (saturated hydraulic conductivity). However, the non-Gaussianity of the background error provided by the nonlinearity of a topography-driven surface flow harms the performance of data assimilation. It is difficult to efficiently constrain model states at the edge of the area where the topography-driven surface flow reaches by linear-Gaussian filters. It brings the new challenge in land data assimilation for hyperresolution land models. This study highlights the importance of surface lateral flows in hydrological data assimilation.

2020 ◽  
Vol 24 (8) ◽  
pp. 3881-3898
Author(s):  
Yohei Sawada

Abstract. It is expected that hyperresolution land modeling substantially innovates the simulation of terrestrial water, energy, and carbon cycles. The major advantage of hyperresolution land models against conventional 1-D land surface models is that hyperresolution land models can explicitly simulate lateral water flows. Despite many efforts on data assimilation of hydrological observations into those hyperresolution land models, how surface water flows driven by local topography matter for data assimilation of soil moisture observations has not been fully clarified. Here I perform two minimalist synthetic experiments where soil moisture observations are assimilated into an integrated surface–groundwater land model by an ensemble Kalman filter. I discuss how differently the ensemble Kalman filter works when surface lateral flows are switched on and off. A horizontal background error covariance provided by overland flows is important for adjusting the unobserved state variables (pressure head and soil moisture) and parameters (saturated hydraulic conductivity). However, the non-Gaussianity of the background error provided by the nonlinearity of a topography-driven surface flow harms the performance of data assimilation. It is difficult to efficiently constrain model states at the edge of the area where the topography-driven surface flow reaches by linear-Gaussian filters. It brings the new challenge in land data assimilation for hyperresolution land models. This study highlights the importance of surface lateral flows in hydrological data assimilation.


2019 ◽  
Author(s):  
Yohei Sawada

Abstract. It is expected that hyperresolution land modeling substantially innovates the simulation of terrestrial water, energy, and carbon cycles. The major advantage of hyperresolution land models against conventional one-dimensional land surface models is that hyperresolution land models can explicitly simulatelateral water flows. Despite many efforts on data assimilation of hydrological observations into those hyperresolution land models, how and when surface water flows driven by local topography matter for data assimilation of soil moisture observations has not been fully clarified. Here I perform two minimalist synthetic experiments where soil moisture observations are assimilated into an integrated surface-groundwater land model by an ensemble Kalman filter. A horizontal background error covariance provided by overland flows is important to adjust the unobserved state and parameter variables. However, the non-Gaussianity of the background error provided by the nonlinearity of a topography-driven surface flow harms the performance of data assimilation. It is difficult to efficiently constrain model states at the edge of the area where the topography-driven surface flow reaches by linear-Gaussian filters, which brings the new challenge in land data assimilation for hyperresolution land models. This study highlights the importance of surface lateral flows in hydrological data assimilation.


2021 ◽  
Author(s):  
Tobias Sebastian Finn ◽  
Gernot Geppert ◽  
Felix Ament

Abstract. We revise the potential of assimilating atmospheric boundary layer observations into the soil moisture. Previous studies often stated a negative assimilation impact of boundary layer observations on the soil moisture analysis, but recent developments in physically-consistent hydrological model systems and ensemble-based data assimilation lead to an emerging potential of boundary layer observations for land surface data assimilation. To explore this potential, we perform idealized twin experiments for a seven-day period in Summer 2015 with a coupled atmosphere-land modelling platform. We use TerrSysMP for these limited-area simulations with a horizontal resolution 1.0 km in the land surface component. We assimilate sparse synthetic 2-metre-temperature observations into the land surface component and update the soil moisture with a localized Ensemble Kalman filter. We show a positive assimilation impact of these observations on the soil moisture analysis during day-time and a neutral impact during night. Furthermore, we find that hourly-filtering with a three-dimensional Ensemble Kalman filter results in smaller errors than daily-smoothing with a one-dimensional Simplified Extended Kalman filter, whereas the Ensemble Kalman filter additionally allows us to directly assimilate boundary layer observations without an intermediate optimal interpolation step. We increase the physical consistency in the analysis for the land surface and boundary by updating the atmospheric temperature together with the soil moisture, which as a consequence further reduces errors in the soil moisture analysis. Based on these results, we conclude that we can merge the decoupled data assimilation cycles for the land surface and the atmosphere into one single cycle with hourly-like update steps.


2006 ◽  
Vol 134 (8) ◽  
pp. 2128-2142 ◽  
Author(s):  
Yuhua Zhou ◽  
Dennis McLaughlin ◽  
Dara Entekhabi

Abstract The ensemble Kalman filter provides an easy-to-use, flexible, and efficient option for data assimilation problems. One of its attractive features in land surface applications is its ability to provide distributional information about variables, such as soil moisture, that can be highly skewed or even bimodal. The ensemble Kalman filter relies on normality approximations that improve its efficiency but can also compromise the accuracy of its distributional estimates. The effects of these approximations can be evaluated by comparing the conditional marginal distributions and moments estimated by the ensemble Kalman filter with those obtained from a sequential importance resampling (SIR) particle filter, which gives exact solutions for large ensemble sizes. Comparisons for two land surface examples indicate that the ensemble Kalman filter is generally able to reproduce nonnormal soil moisture behavior, including the skewness that occurs when the soil is either very wet or very dry. Its conditional mean estimates are very close to those generated by the SIR filter. Its higher-order conditional moments are somewhat less accurate than the means. Overall, the ensemble Kalman filter appears to provide a good approximation for nonlinear, nonnormal land surface problems, despite its dependence on normality assumptions.


2016 ◽  
Author(s):  
Hongjuan Zhang ◽  
Harrie-Jan Hendricks Franssen ◽  
Xujun Han ◽  
Jasper Vrugt ◽  
Harry Vereecken

Abstract. Land surface models (LSMs) contain a suite of different parameters and state variables to resolve the water and energy balance at the soil-atmosphere interface. Many of the parameters of these models cannot be measured directly in the field, and require calibration against flux and soil moisture data. In this paper, we use the Variable Infiltration Capacity Hydrologic Model (VIC) and the Community Land Model (CLM) to simulate temporal variations in soil moisture content at 5, 20 and 50 cm depth in the Rollesbroich experimental watershed in Germany. Four different data assimilation (DA) methods are used to jointly estimate the spatially distributed water content values, and hydraulic and/or thermal properties of the resolved soil domain. This includes the Ensemble Kalman Filter (EnKF) using state augmentation or dual estimation, the Residual Resampling Particle Filter (RRPF) and Markov chain Monte Carlo Particle Filter (MCMCPF). These four DA methods are tuned and calibrated for a five month data period, and subsequently evaluated for another five month period. Our results show that all the different DA methods improve the fit of the VIC and CLM model to the observed water content data, particularly if the maximum baseflow velocity (VIC), soil hydraulic (VIC) properties and/or soil texture (CLM) are jointly estimated along with the model states. In the evaluation period, the augmentation and dual estimation method performed slightly better than RRPF and MCMCPF. The differences in simulated soil moisture values between the CLM and VIC model were larger than variations among the data assimilation algorithms. The best performance for the Rollesbroich site was observed for the CLM model. The strong underestimation of the soil moisture values of the third VIC-layer are likely explained by an inadequate parameterization of groundwater drainage.


2011 ◽  
Vol 139 (6) ◽  
pp. 2008-2024 ◽  
Author(s):  
Brian C. Ancell ◽  
Clifford F. Mass ◽  
Gregory J. Hakim

Abstract Previous research suggests that an ensemble Kalman filter (EnKF) data assimilation and modeling system can produce accurate atmospheric analyses and forecasts at 30–50-km grid spacing. This study examines the ability of a mesoscale EnKF system using multiscale (36/12 km) Weather Research and Forecasting (WRF) model simulations to produce high-resolution, accurate, regional surface analyses, and 6-h forecasts. This study takes place over the complex terrain of the Pacific Northwest, where the small-scale features of the near-surface flow field make the region particularly attractive for testing an EnKF and its flow-dependent background error covariances. A variety of EnKF experiments are performed over a 5-week period to test the impact of decreasing the grid spacing from 36 to 12 km and to evaluate new approaches for dealing with representativeness error, lack of surface background variance, and low-level bias. All verification in this study is performed with independent, unassimilated observations. Significant surface analysis and 6-h forecast improvements are found when EnKF grid spacing is reduced from 36 to 12 km. Forecast improvements appear to be a consequence of increased resolution during model integration, whereas analysis improvements also benefit from high-resolution ensemble covariances during data assimilation. On the 12-km domain, additional analysis improvements are found by reducing observation error variance in order to address representativeness error. Removing model surface biases prior to assimilation significantly enhances the analysis. Inflating surface wind and temperature background error variance has large impacts on analyses, but only produces small improvements in analysis RMS errors. Both surface and upper-air 6-h forecasts are nearly unchanged in the 12-km experiments. Last, 12-km WRF EnKF surface analyses and 6-h forecasts are shown to generally outperform those of the Global Forecast System (GFS), North American Model (NAM), and the Rapid Update Cycle (RUC) by about 10%–30%, although these improvements do not extend above the surface. Based on these results, future improvements in multiscale EnKF are suggested.


2011 ◽  
Vol 15 (8) ◽  
pp. 2437-2457 ◽  
Author(s):  
S. Nie ◽  
J. Zhu ◽  
Y. Luo

Abstract. The performance of the ensemble Kalman filter (EnKF) in soil moisture assimilation applications is investigated in the context of simultaneous state-parameter estimation in the presence of uncertainties from model parameters, soil moisture initial condition and atmospheric forcing. A physically based land surface model is used for this purpose. Using a series of identical twin experiments in two kinds of initial parameter distribution (IPD) scenarios, the narrow IPD (NIPD) scenario and the wide IPD (WIPD) scenario, model-generated near surface soil moisture observations are assimilated to estimate soil moisture state and three hydraulic parameters (the saturated hydraulic conductivity, the saturated soil moisture suction and a soil texture empirical parameter) in the model. The estimation of single imperfect parameter is successful with the ensemble mean value of all three estimated parameters converging to their true values respectively in both NIPD and WIPD scenarios. Increasing the number of imperfect parameters leads to a decline in the estimation performance. A wide initial distribution of estimated parameters can produce improved simultaneous multi-parameter estimation performances compared to that of the NIPD scenario. However, when the number of estimated parameters increased to three, not all parameters were estimated successfully for both NIPD and WIPD scenarios. By introducing constraints between estimated hydraulic parameters, the performance of the constrained three-parameter estimation was successful, even if temporally sparse observations were available for assimilation. The constrained estimation method can reduce RMSE much more in soil moisture forecasting compared to the non-constrained estimation method and traditional non-parameter-estimation assimilation method. The benefit of this method in estimating all imperfect parameters simultaneously can be fully demonstrated when the corresponding non-constrained estimation method displays a relatively poor parameter estimation performance. Because all these constraints between parameters were obtained in a statistical sense, this constrained state-parameter estimation scheme is likely suitable for other land surface models even with more imperfect parameters estimated in soil moisture assimilation applications.


2012 ◽  
Vol 140 (2) ◽  
pp. 587-600 ◽  
Author(s):  
Meng Zhang ◽  
Fuqing Zhang

A hybrid data assimilation approach that couples the ensemble Kalman filter (EnKF) and four-dimensional variational (4DVar) methods is implemented for the first time in a limited-area weather prediction model. In this coupled system, denoted E4DVar, the EnKF and 4DVar systems run in parallel while feeding into each other. The multivariate, flow-dependent background error covariance estimated from the EnKF ensemble is used in the 4DVar minimization and the ensemble mean in the EnKF analysis is replaced by the 4DVar analysis, while updating the analysis perturbations for the next cycle of ensemble forecasts with the EnKF. Therefore, the E4DVar can obtain flow-dependent information from both the explicit covariance matrix derived from ensemble forecasts, as well as implicitly from the 4DVar trajectory. The performance of an E4DVar system is compared with the uncoupled 4DVar and EnKF for a limited-area model by assimilating various conventional observations over the contiguous United States for June 2003. After verifying the forecasts from each analysis against standard sounding observations, it is found that the E4DVar substantially outperforms both the EnKF and 4DVar during this active summer month, which featured several episodes of severe convective weather. On average, the forecasts produced from E4DVar analyses have considerably smaller errors than both of the stand-alone EnKF and 4DVar systems for forecast lead times up to 60 h.


2015 ◽  
Vol 42 (16) ◽  
pp. 6710-6715 ◽  
Author(s):  
Jifu Yin ◽  
Xiwu Zhan ◽  
Youfei Zheng ◽  
Christopher R. Hain ◽  
Jicheng Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document