scholarly journals BIFOCAL STEREO FOR MULTIPATH PERSON RE-IDENTIFICATION

Author(s):  
G. Blott ◽  
C. Heipke

This work presents an approach for the task of person re-identification by exploiting bifocal stereo cameras. Present monocular person re-identification approaches show a decreasing working distance, when increasing the image resolution to obtain a higher reidentification performance. We propose a novel 3D multipath bifocal approach, containing a rectilinear lens with larger focal length for long range distances and a fish eye lens of a smaller focal length for the near range. The person re-identification performance is at least on par with 2D re-identification approaches but the working distance of the approach is increased and on average 10% more re-identification performance can be achieved in the overlapping field of view compared to a single camera. In addition, the 3D information is exploited from the overlapping field of view to solve potential 2D ambiguities.

2013 ◽  
Vol 467 ◽  
pp. 323-326
Author(s):  
Jong Eun Ha

Fish-eye lens is used in various applications due to wide coverage of scene. In particular, it can be effectively used in visual surveillance and surround monitoring in automotive. It has large radial distortion compared to the conventional lens with small field of view. In this paper, we present comparison results for the calibration of fish-eye lens. We compare two algorithms where one is available in OpenCV [ and the other is Devernay and Faugeras [. Also, we present experimental result according to the number of calibration points, initialization value. We evaluate the accuracy of calibration thorough 3D reconstruction by stereo system. It can give more reliable evaluation than using reprojection eror by single camera.


Sensors ◽  
2019 ◽  
Vol 19 (5) ◽  
pp. 1218 ◽  
Author(s):  
Kang Choi ◽  
Yongil Kim ◽  
Changjae Kim

The fish-eye lens camera offers the advantage of efficient acquisition of image data through a wide field of view. However, unlike the popular perspective projection camera, a strong distortion effect appears as the periphery of the image is compressed. Such characteristics must be precisely analyzed through camera self-calibration. In this study, we carried out a fish-eye lens camera self-calibration while considering different types of test objects and projection models. Self-calibration was performed using the V-, A-, Plane-, and Room-type test objects. In the fish-eye lens camera, the V-type test object was the most advantageous for ensuring the accuracy of the principal point coordinates and focal length, because the correlations between parameters were relatively low. On the other hand, the other test objects were advantageous for ensuring the accuracy of distortion parameters because of the well-distributed image points. Based on the above analysis, we proposed, an accurate fish-eye lens camera self-calibration method that applies the V-type test object. The RMS-residuals of the proposed method were less than 1 pixel.


Author(s):  
A. V. Crewe ◽  
J. Wall ◽  
L. M. Welter

A scanning microscope using a field emission source has been described elsewhere. This microscope has now been improved by replacing the single magnetic lens with a high quality lens of the type described by Ruska. This lens has a focal length of 1 mm and a spherical aberration coefficient of 0.5 mm. The final spot size, and therefore the microscope resolution, is limited by the aberration of this lens to about 6 Å.The lens has been constructed very carefully, maintaining a tolerance of + 1 μ on all critical surfaces. The gun is prealigned on the lens to form a compact unit. The only mechanical adjustments are those which control the specimen and the tip positions. The microscope can be used in two modes. With the lens off and the gun focused on the specimen, the resolution is 250 Å over an undistorted field of view of 2 mm. With the lens on,the resolution is 20 Å or better over a field of view of 40 microns. The magnification can be accurately varied by attenuating the raster current.


2021 ◽  
Vol 13 (9) ◽  
pp. 1852
Author(s):  
Yiren Wang ◽  
Dong Liu ◽  
Wanyi Xie ◽  
Ming Yang ◽  
Zhenyu Gao ◽  
...  

The formation and evolution of clouds are associated with their thermodynamical and microphysical progress. Previous studies have been conducted to collect images using ground-based cloud observation equipment to provide important cloud characteristics information. However, most of this equipment cannot perform continuous observations during the day and night, and their field of view (FOV) is also limited. To address these issues, this work proposes a day and night clouds detection approach integrated into a self-made thermal-infrared (TIR) all-sky-view camera. The TIR camera consists of a high-resolution thermal microbolometer array and a fish-eye lens with a FOV larger than 160°. In addition, a detection scheme was designed to directly subtract the contamination of the atmospheric TIR emission from the entire infrared image of such a large FOV, which was used for cloud recognition. The performance of this scheme was validated by comparing the cloud fractions retrieved from the infrared channel with those from the visible channel and manual observation. The results indicated that the current instrument could obtain accurate cloud fraction from the observed infrared image, and the TIR all-sky-view camera developed in this work exhibits good feasibility for long-term and continuous cloud observation.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2776
Author(s):  
Kang Hyeok Choi ◽  
Changjae Kim

The fish-eye lens camera has a wide field of view that makes it effective for various applications and sensor systems. However, it incurs strong geometric distortion in the image due to compressive recording of the outer part of the image. Such distortion must be interpreted accurately through a self-calibration procedure. This paper proposes a new type of test-bed (the AV-type test-bed) that can effect a balanced distribution of image points and a low level of correlation between orientation parameters. The effectiveness of the proposed test-bed in the process of camera self-calibration was verified through the analysis of experimental results from both a simulation and real datasets. In the simulation experiments, the self-calibration procedures were performed using the proposed test-bed, four different projection models, and five different datasets. For all of the cases, the Root Mean Square residuals (RMS-residuals) of the experiments were lower than one-half pixel. The real experiments, meanwhile, were carried out using two different cameras and five different datasets. These results showed high levels of calibration accuracy (i.e., lower than the minimum value of RMS-residuals: 0.39 pixels). Based on the above analyses, we were able to verify the effectiveness of the proposed AV-type test-bed in the process of camera self-calibration.


2009 ◽  
Vol 1 ◽  
pp. 288-300 ◽  
Author(s):  
Daisuke Miyazaki ◽  
Mahdi Ammar ◽  
Rei Kawakami ◽  
Katsushi Ikeuchi
Keyword(s):  
Eye Lens ◽  

2021 ◽  
Author(s):  
Yong Liu ◽  
Hongda Lu ◽  
Zhipeng Liu ◽  
Yanbo Zhang ◽  
Ke Pang
Keyword(s):  
Eye Lens ◽  

2017 ◽  
Vol 36 (2) ◽  
pp. 143 ◽  
Author(s):  
Vivek Singh Bawa ◽  
Krishan Kumar ◽  
Vinay Kumar

Advanced driver assistance systems (ADAS) have been developed to automate and modify vehicles for safety and better driving experience. Among all computer vision modules in ADAS, 360-degree surround view generation of immediate surroundings of the vehicle is very important, due to application in on-road traffic assistance, parking assistance etc. This paper presents a novel algorithm for fast and computationally efficient transformation of input fisheye images into required top down view. This paper also presents a generalized framework for generating top down view of images captured by cameras with fish-eye lenses mounted on vehicles, irrespective of pitch or tilt angle. The proposed approach comprises of two major steps, viz. correcting the fish-eye lens images to rectilinear images, and generating top-view perspective of the corrected images. The images captured by the fish-eye lens possess barrel distortion, for which a nonlinear and non-iterative method is used. Thereafter, homography is used to obtain top-down view of corrected images. This paper also targets to develop surroundings of the vehicle for wider distortion less field of view and camera perspective independent top down view, with minimum computation cost which is essential due to limited computation power on vehicles.


Sign in / Sign up

Export Citation Format

Share Document