scholarly journals CNN BASED DETECTION OF BUILDING ROOFS FROM HIGH RESOLUTION SATELLITE IMAGES

Author(s):  
L. Hang ◽  
G. Y. Cai

Abstract. The detection and reconstruction of building have attracted more attention in the community of remote sensing and computer vision. Light detection and ranging (LiDAR) has been proved to be a good way to extract building roofs, while we have to face the problem of data shortage for most of the time. In this paper, we tried to extract the building roofs from very high resolution (VHR) images of Chinese satellite Gaofen-2 by employing convolutional neural network (CNN). It has been proved that the CNN is of a higher capability of recognizing detailed features which may not be classified out by object-based classification approach. Several major steps are concerned in this study, such as generation of training dataset, model training, image segmentation and building roofs recognition. First, urban objects such as trees, roads, squares and buildings were classified based on random forest algorithm by an object-oriented classification approach, the building regions were separated from other classes at the aid of visually interpretation and correction; Next, different types of building roofs mainly categorized by color and size information were trained using the trained CNN. Finally, the industrial and residential building roofs have been recognized individually and the results have been validated individually. The assessment results prove effectiveness of the proposed method with approximately 91% and 88% of quality rates in detection industrial and residential building roofs, respectively. Which means that the CNN approach is prospecting in detecting buildings with a very higher accuracy.

2021 ◽  
pp. 1-11
Author(s):  
Yasser Mostafa ◽  
Mahmoud Nokrashy O. Ali ◽  
Faten Mostafa ◽  
Mohamed Yousef

Sensors ◽  
2021 ◽  
Vol 21 (1) ◽  
pp. 320
Author(s):  
Emilio Guirado ◽  
Javier Blanco-Sacristán ◽  
Emilio Rodríguez-Caballero ◽  
Siham Tabik ◽  
Domingo Alcaraz-Segura ◽  
...  

Vegetation generally appears scattered in drylands. Its structure, composition and spatial patterns are key controls of biotic interactions, water, and nutrient cycles. Applying segmentation methods to very high-resolution images for monitoring changes in vegetation cover can provide relevant information for dryland conservation ecology. For this reason, improving segmentation methods and understanding the effect of spatial resolution on segmentation results is key to improve dryland vegetation monitoring. We explored and analyzed the accuracy of Object-Based Image Analysis (OBIA) and Mask Region-based Convolutional Neural Networks (Mask R-CNN) and the fusion of both methods in the segmentation of scattered vegetation in a dryland ecosystem. As a case study, we mapped Ziziphus lotus, the dominant shrub of a habitat of conservation priority in one of the driest areas of Europe. Our results show for the first time that the fusion of the results from OBIA and Mask R-CNN increases the accuracy of the segmentation of scattered shrubs up to 25% compared to both methods separately. Hence, by fusing OBIA and Mask R-CNNs on very high-resolution images, the improved segmentation accuracy of vegetation mapping would lead to more precise and sensitive monitoring of changes in biodiversity and ecosystem services in drylands.


Sign in / Sign up

Export Citation Format

Share Document