scholarly journals DEVELOPMENT OF A 3D CADASTRE AUGMENTED REALITY AND VISUALIZATION IN MALAYSIA

Author(s):  
F. I. Hairuddin ◽  
A. R. Abdul Rasam ◽  
M. H. Razali

Abstract. This paper discusses the capabilities of cadastre augmented reality (AR) and three-dimensional (3D) visualization in enhancing the stratified property visibility and information of the current strata plan in Malaysia. Currently, 2D information representation from the 2D+1D cadastre system is seen to be insufficient in serving real land management of the 3D aspect and property. Hence, toward a better digital 3D strata/property registration and land administration system in Malaysia, this study has explored the process in utilizing AR and 3D model to the current strata plan to enhance digital strata information contents and enabling the virtual strata plan presentation. The software used to develop the AR application smartphone was Unity3D software while Autodesk Revit applied to develop the 3D model and preparation of strata information. The interesting findings has been shown in this study. First result showed 3D models and strata parcel’s attribute that has been developed for AR digital content preparation. Secondly, this 3D-AR processes can continuously gather of user’s ambient information, conduct real-world recognition, and obtain real-world perception through smartphone device. Lastly, with utilization of AR technology in strata, it provides a more information to the strata plan without needing to change the current format of strata plan as the information are being displayed virtually onto the reality. With the integration of augmented reality and 3D visualization, the documentation of stratified properties in strata plan is potential to be enhanced from 2D planimetric to 3D representation. overlaid 3D model of the stratified property and standard strata information virtually on the present strata plan which has created an enhanced reality. This can allow the information to be viewed by more stakeholders with less restriction by using smartphone device.

2019 ◽  
Vol 11 (2) ◽  
Author(s):  
Jessica Carlina

Jajanan Pasar is a term for Indonesian traditional snacks, a part of Indonesian culture that has been forgotten by the young generation. Three-dimensional (3D) animation and Augmented Reality (AR) can be used as a medium for introducing this culture to children aged 4 to 6. Because, in AR, visual between real and digital world can be altered, so the visual of 3D models can be enjoyed from various sides. This study focuses on 3D visualization for AR that packaged in 5 set of puzzles. Each piece has an illustration of the ingredients for making 5 kinds of Jajanan Pasar, after all, puzzle pieces of each set get arranged, a new 3D model of traditional snacks will be appeared. The data was collected using literature and existing studies method. The purpose of this study is to create an optimal 3D visualization for AR that will be applicated for mobile devices. Conclusion from this project are the polygon count and target marker’s quality, affect the appearance of the 3D model in AR form.


2018 ◽  
Vol 7 (12) ◽  
pp. 463 ◽  
Author(s):  
Chris Panou ◽  
Lemonia Ragia ◽  
Despoina Dimelli ◽  
Katerina Mania

In this paper, we present the software architecture of a complete mobile tourist guide for cultural heritage sites located in the old town of Chania, Crete, Greece. This includes gamified components that motivate the user to traverse the suggested interest points, as well as technically challenging outdoors augmented reality (AR) visualization features. The main focus of the AR feature is to superimpose 3D models of historical buildings in their past state onto the real world, while users walk around the Venetian part of Chania’s city, exploring historical information in the form of text and images. We examined and tested registration and tracking mechanisms based on commercial AR frameworks in the challenging outdoor, sunny environment of a Mediterranean town, addressing relevant technical challenges. Upon visiting one of three significant monuments, a 3D model displaying the monument in its past state is visualized onto the mobile phone’s screen at the exact location of the real-world monument, while the user is exploring the area. A location-based experience was designed and integrated into the application, enveloping the 3D model with real-world information at the same time. The users are urged to explore interest areas and unlock historical information, while earning points following a gamified experience. By combining AR technologies with location-aware and gamified elements, we aim to promote the technologically enhanced public appreciation of cultural heritage sites and showcase the cultural depth of the city of Chania.


2020 ◽  
Vol 3 (2) ◽  
pp. 87-98
Author(s):  
Anastasiya A. Berdugina ◽  
Aleksandr V. Chernov

The presentation of the property in the form of a three-dimensional model has become a subject of increased interest in cadastre management over the past decades. An analysis of this area in Russia showed a virtual lack of dynamics in the development of 3D modeling. One of the reasons is the lack of structure and content of a 3D model. The article presents a formalized description of the elements of a 3D model, on the basis of which a set of criteria and their indicators was proposed and a comparative analysis of the content of 3D models of advanced foreign countries was carried out. As a result of the analysis, a formalized description of the structure and content of 3D models in accordance with the national characteristics of the countries under consideration is proposed. Based on the data obtained, the Russian model of the 3D cadastre is formalized, and ways of its modernization are proposed in accordance with the best technological solutions of the analyzed cadastral systems.


Author(s):  
Mitali Ghotgalkar ◽  
Purnima Kubde

Augmented Reality is the presentation of objects superimposed on the real world view of the environment. It is an innovative technology that allows multidimensional viewing and understanding of concepts. This paper aims to use this concept of Augmented Reality in the field of Education to create an application that generates 3D models of the images embedded in textual materials using the software Unity and Vuforia. The application uses a smartphone’s camera to scan the embedded image of a textbook, e-book or photocopy and generates a 3D working model with live animations as well as on-click functionalities to view various movements of the model by providing user interaction. This application aims to provide an active learning experience to students.


2021 ◽  
Vol 7 (1) ◽  
pp. 540-555
Author(s):  
Hayley L. Mickleburgh ◽  
Liv Nilsson Stutz ◽  
Harry Fokkens

Abstract The reconstruction of past mortuary rituals and practices increasingly incorporates analysis of the taphonomic history of the grave and buried body, using the framework provided by archaeothanatology. Archaeothanatological analysis relies on interpretation of the three-dimensional (3D) relationship of bones within the grave and traditionally depends on elaborate written descriptions and two-dimensional (2D) images of the remains during excavation to capture this spatial information. With the rapid development of inexpensive 3D tools, digital replicas (3D models) are now commonly available to preserve 3D information on human burials during excavation. A procedure developed using a test case to enhance archaeothanatological analysis and improve post-excavation analysis of human burials is described. Beyond preservation of static spatial information, 3D visualization techniques can be used in archaeothanatology to reconstruct the spatial displacement of bones over time, from deposition of the body to excavation of the skeletonized remains. The purpose of the procedure is to produce 3D simulations to visualize and test archaeothanatological hypotheses, thereby augmenting traditional archaeothanatological analysis. We illustrate our approach with the reconstruction of mortuary practices and burial taphonomy of a Bell Beaker burial from the site of Oostwoud-Tuithoorn, West-Frisia, the Netherlands. This case study was selected as the test case because of its relatively complete context information. The test case shows the potential for application of the procedure to older 2D field documentation, even when the amount and detail of documentation is less than ideal.


2018 ◽  
Vol 18 ◽  
pp. 98-105
Author(s):  
N. V. Pavliuk

The issues related to the introduction of innovative methods, technologies and technological means in the investigation of crimes are considered. It is noted that one of the main directions of the development of Criminalistics is the assimilation of the virtual reality associated with computerization of spheres of life, implementation of modern technologies and their use in law enforcement. Technology use of laser scanning of terrain and objects resulting in 3D model is produced allows several times to increase informative value of data collected at the incident scene, provides a visual and convenient visualization in three-dimensional form. As against photo and video images, 3D model has a stereoscopic image and the ability to freely change the angle while viewing. Besides to scanning results can be stored on any digital media without the possibility of changes or adjustments. Attention is focused on the technological capabilities of 3D-visualization systems on examples of their use in foreign countries as technological means of capturing the situation of the scene and the subsequent of a crime reconstruction. Thus, using a portable three-dimensional imaging system for working with volumetric traces at a crime scene, it is possible to obtain accurate three-dimensional images of traces of protectors or footprints (shoes) on soil and snow. This system is an alternative to traditional methods of fixing evidence: photofixing and making plaster casts. Unlike other systems, new approach does not require the use of lasers. The expediency of expanding the range of 3D laser scanning system use in modern investigative and judicial practice of our state with the aim of increasing the level of provision of pre-trial investigation authorities with technological means and bringing it closer to European standards is argued.


2018 ◽  
Author(s):  
Uri Korisky ◽  
Rony Hirschhorn ◽  
Liad Mudrik

Notice: a peer-reviewed version of this preprint has been published in Behavior Research Methods and is available freely at http://link.springer.com/article/10.3758/s13428-018-1162-0Continuous Flash Suppression (CFS) is a popular method for suppressing visual stimuli from awareness for relatively long periods. Thus far, it has only been used for suppressing two-dimensional images presented on-screen. We present a novel variant of CFS, termed ‘real-life CFS’, with which the actual immediate surroundings of an observer – including three-dimensional, real life objects – can be rendered unconscious. Real-life CFS uses augmented reality goggles to present subjects with CFS masks to their dominant eye, leaving their non-dominant eye exposed to the real world. In three experiments we demonstrate that real objects can indeed be suppressed from awareness using real-life CFS, and that duration suppression is comparable that obtained using the classic, on-screen CFS. We further provide an example for an experimental code, which can be modified for future studies using ‘real-life CFS’. This opens the gate for new questions in the study of consciousness and its functions.


Author(s):  
Vivek Parashar

Augmented Reality is the technology using which we can integrate 3D virtual objects in our physical environment in real time. Augmented Reality helps us in bring the virtual world closer to our physical worlds and gives us the ability to interact with the surrounding. This paper will give you an idea that how Augmented Reality can transform Education Industry. In this paper we have used Augmented Reality to simplify the learning process and allow people to interact with 3D models with the help of gestures. This advancement in the technology is changing the way we interact with our surrounding, rather than watching videos or looking at a static diagram in your text book, Augmented Reality enables you to do more. So rather than putting someone in the animated world, the goal of augmented reality is to blend the virtual objects in the real world.


Author(s):  
Luis Marques ◽  
Josep Roca

The creation of 3D models of urban elements is extremely relevant for urbanists constituting digital archives and being especially useful for enriching maps and databases or reconstructing and analyzing objects/areas through time, building/recreating scenarios and implementing intuitive methods of interaction. The widespread data available online offer new opportunities to generate realistic 3D models without the need to go physically to the place. This chapter aims to demonstrate the potential 3D modeling and visualization/interaction of urban elements in the city for multiple purposes, and it is organized in four main topics: The first deals with the theoretical framework regarding the bases of the human perception of the spatial environment and the importance of 3D modelling. The second and third deal with technical procedures on terrestrial/aerial data acquisition and demonstrate alternatively data gathered online to generate 3D models for the visualization of urban elements of the city, and the fourth introduces 3D model visualization within an augmented reality environment.


2020 ◽  
Vol 114 (5) ◽  
pp. 370-381
Author(s):  
Derrick W. Smith ◽  
Sandra A. Lampley ◽  
Bob Dolan ◽  
Greg Williams ◽  
David Schleppenbach ◽  
...  

Introduction: The emerging technology of three-dimensional (3D) printing has the potential to provide unique 3D modeling to support specific content in science, technology, engineering, and mathematics (STEM) education, particularly chemistry. Method: Seventeen ( n = 17) students with visual impairments were provided direct instruction on chemistry atomic orbital content and allowed to use either print or tactile graphics or 3D models in rotating order. Participants were asked specific content questions based upon the atomic orbitals. Results: The students were asked two sets of comprehension questions: general and specific. Overall, students’ responses for general questions increased per iteration regardless of which manipulative was used. For specific questions, the students answered more questions correctly when using the 3D model regardless of order. When asked about their perceptions toward the manipulatives, the students preferred the 3D model over print or tactile graphics. Discussion: The findings show the potential for 3D printed materials in learning complex STEM content. Although the students preferred the 3D models, they all mentioned that a combination of manipulatives helped them better understand the material. Implications for practitioners: Practitioners should consider the use of manipulatives that include 3D printed materials to support STEM education.


Sign in / Sign up

Export Citation Format

Share Document