scholarly journals CONTRIBUTION OF BATHYMETRIC MULTI-BEAM SONAR AND LASER SCANNERS IN 3D MODELING AND ESTIMATION OF SILTATION OF DAM BASIN IN MOROCCO

Author(s):  
M. Bouziani ◽  
F. Boucht ◽  
F. Nouri

Abstract. In Morocco, the phenomenon of silting affects all the dams, where more than 75 Mm3 of sediments are deposited every year at the bottom of the reservoirs. The aim of our study is to assess the contribution of the bathymetric multi-beam sonar as well as static and mobile laser scanners in the estimation of siltation of the basin of the Tanger-Med dam in the north of Morocco. The proposed methodology consists of performing and fusion of a bathymetric survey by multi-beam echo-sounder with terrestrial laser scanner surveys in static mode and mobile mode. The result of these surveys is used, for the calculation of the siltation volume and the inspection of the upstream facing of the main structure. Siltation calculation was carried out with comparison to a reference survey obtained by single beam sonar. The comparison between these two instruments showed that the multi-beam presents many advantages: high density of the cloud of points acquired and precision. The density allows providing a better description of the dam's bottom. The comparative study between the two types of scanners showed that static scanner offers a better accuracy. However, mobile scanner gives more accessibility of all parts of the dam. As a conclusion, the multi-beam echo-sounder with additional laser scanner data have many advantages in this study: volume calculation precision, reduction of the acquisition time and the enhancement of the acquired point cloud density. We also obtained a global 3d modelling useful for the monitoring of the infrastructure.

2019 ◽  
Vol 94 ◽  
pp. 01014
Author(s):  
Khomsin ◽  
Danar Guruh Pratomo ◽  
Ira Mutiara Anjasmara ◽  
Faizzuddin Ahmad

Recently, technological developments in the field of surveys and mapping are growing very rapidly such as total station, navigation satellite (Global Navigation Satellite System), drones and laser scanners. One application of this technology is to measure a stockpile area quickly and accurately. This research will measure two stockpiles (coal warehouses) using total station (TS), GNSS and terrestrial laser scanner (TLS). This research will compare the results of volume calculations with the data generated by 3’S (TS, GNSS and TLS). Research is conducted at Coal Yard PT. Barkalin Surabaya in Benowo District, Surabaya, East City with geographically located at 112°39'11'’ E and 7°07’13‘' S. The first step is to make 3D model of Laser Scanner data by TLS Faro 3D 120 and to do regristrastion and filltering using Faro Scene. After that the data export to be 3D model from Faro Scene format to Recap 2016 (.rcp) to present and get coordinates. The next step is to compare the coordinates from TLS, TS and GNSS RTK. Finally, the accuracy of volume calculation from TS and GNSS RTK can be compared to TLS. The volume differences between TS and TLS data are -7.31 m3 (-0.45%) for the 1st location and -6.89 m3 (-0.24%) for the 2nd location. While the volume differences between GNSS RTK and TLS are -10.34 m3 (-0.63%) and -9.05 m3 (-0.31%) for the 1st location and the 2nd location respectively. Generally, the volume differences between TLS, TS and GNSS RTK are not significant. Therefore, 3’S can be used to measure a volume of stockpile.


2019 ◽  
Vol 952 (10) ◽  
pp. 47-54
Author(s):  
A.V. Komissarov ◽  
A.V. Remizov ◽  
M.M. Shlyakhova ◽  
K.K. Yambaev

The authors consider hand-held laser scanners, as a new photogrammetric tool for obtaining three-dimensional models of objects. The principle of their work and the newest optical systems based on various sensors measuring the depth of space are described in detail. The method of simultaneous navigation and mapping (SLAM) used for combining single scans into point cloud is outlined. The formulated tasks and methods for performing studies of the DotProduct (USA) hand-held laser scanner DPI?8X based on a test site survey are presented. The accuracy requirements for determining the coordinates of polygon points are given. The essence of the performed experimental research of the DPI?8X scanner is described, including scanning of a test object at various scanner distances, shooting a test polygon from various scanner positions and building point cloud, repeatedly shooting the same area of the polygon to check the stability of the scanner. The data on the assessment of accuracy and analysis of research results are given. Fields of applying hand-held laser scanners, their advantages and disadvantages are identified.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2263
Author(s):  
Haileleol Tibebu ◽  
Jamie Roche ◽  
Varuna De Silva ◽  
Ahmet Kondoz

Creating an accurate awareness of the environment using laser scanners is a major challenge in robotics and auto industries. LiDAR (light detection and ranging) is a powerful laser scanner that provides a detailed map of the environment. However, efficient and accurate mapping of the environment is yet to be obtained, as most modern environments contain glass, which is invisible to LiDAR. In this paper, a method to effectively detect and localise glass using LiDAR sensors is proposed. This new approach is based on the variation of range measurements between neighbouring point clouds, using a two-step filter. The first filter examines the change in the standard deviation of neighbouring clouds. The second filter uses a change in distance and intensity between neighbouring pules to refine the results from the first filter and estimate the glass profile width before updating the cartesian coordinate and range measurement by the instrument. Test results demonstrate the detection and localisation of glass and the elimination of errors caused by glass in occupancy grid maps. This novel method detects frameless glass from a long range and does not depend on intensity peak with an accuracy of 96.2%.


2011 ◽  
Vol 6 ◽  
pp. 275-282 ◽  
Author(s):  
C. Re ◽  
S. Robson ◽  
R. Roncella ◽  
M Hess

In the cultural heritage field the recording and documentation of small and medium size objects with very detailed Digital Surface Models (DSM) is readily possible by through the use of high resolution and high precision triangulation laser scanners. 3D surface recording of archaeological objects can be easily achieved in museums; however, this type of record can be quite expensive. In many cases photogrammetry can provide a viable alternative for the generation of DSMs. The photogrammetric procedure has some benefits with respect to laser survey. The research described in this paper sets out to verify the reconstruction accuracy of DSMs of some archaeological artifacts obtained by photogrammetric survey. The experimentation has been carried out on some objects preserved in the Petrie Museum of Egyptian Archaeology at University College London (UCL). DSMs produced by two photogrammetric software packages are compared with the digital 3D model obtained by a state of the art triangulation color laser scanner. Intercomparison between the generated DSM has allowed an evaluation of metric accuracy of the photogrammetric approach applied to archaeological documentation and of precision performances of the two software packages.


2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Xiaoquan Shi ◽  
Yazhou Sun ◽  
Haitao Liu ◽  
Linqi Bai ◽  
Chonghao Lin

AbstractThis study presents laser stripe center extraction algorithm for desktop-level 3D laser scanners. The laser stripe center extraction accuracy is an important factor affecting 3D scanning result. Desktop-level devices should have adaptability of a wide range of scanning objects. In this paper, laser stripe energy distribution characteristics with different laser stripe width, ambient light, materials and colors are obtained by experiments. Experiment results show that waveforms of bright spot, low brightness stripe and stripe with large width are complex or easily disturbed, so the center extraction algorithm of them are studied. The extraction effects of extremum method, gradient method and gray centroid method under different conditions are compared. Based on traditional grayscale value, a weighted grayscale value is proposed to extract laser stripe center. Standard deviations of extracted pixel position and fitting pixel position are calculated by different method with different weighted grayscale value. For different conditions, especially for different ambient light intensity, weight matrix plays an important role to extraction result.


Author(s):  
J.-F. Hullo

We propose a complete methodology for the fine registration and referencing of kilo-station networks of terrestrial laser scanner data currently used for many valuable purposes such as 3D as-built reconstruction of Building Information Models (BIM) or industrial asbuilt mock-ups. This comprehensive target-based process aims to achieve the global tolerance below a few centimetres across a 3D network including more than 1,000 laser stations spread over 10 floors. This procedure is particularly valuable for 3D networks of indoor congested environments. In situ, the use of terrestrial laser scanners, the layout of the targets and the set-up of a topographic control network should comply with the expert methods specific to surveyors. Using parametric and reduced Gauss-Helmert models, the network is expressed as a set of functional constraints with a related stochastic model. During the post-processing phase inspired by geodesy methods, a robust cost function is minimised. At the scale of such a data set, the complexity of the 3D network is beyond comprehension. The surveyor, even an expert, must be supported, in his analysis, by digital and visual indicators. In addition to the standard indicators used for the adjustment methods, including Baarda’s reliability, we introduce spectral analysis tools of graph theory for identifying different types of errors or a lack of robustness of the system as well as <i>in fine</i> documenting the quality of the registration.


Author(s):  
M. A. Abbas ◽  
H. Setan ◽  
Z. Majid ◽  
A. K. Chong ◽  
L. Chong Luh ◽  
...  

Similar to other electronic instruments, terrestrial laser scanner (TLS) can also inherent with various systematic errors coming from different sources. Self-calibration technique is a method available to investigate these errors for TLS which were adopted from photogrammetry technique. According to the photogrammetry principle, the selection of datum constraints can cause different types of parameter correlations. However, the network configuration applied by TLS and photogrammetry calibrations are quite different, thus, this study has investigated the significant of photogrammetry datum constraints principle in TLS self-calibration. To ensure that the assessment is thorough, the datum constraints analyses were carried out using three variant network configurations: 1) minimum number of scan stations; 2) minimum number of surfaces for targets distribution; and 3) minimum number of point targets. Based on graphical and statistical, the analyses of datum constraints selection indicated that the parameter correlations obtained are significantly similar. In addition, the analysis has demonstrated that network configuration is a very crucial factor to reduce the correlation between the calculated parameters.


Author(s):  
K. Nakano ◽  
Y. Tanaka ◽  
H. Suzuki ◽  
K. Hayakawa ◽  
M. Kurodai

Abstract. Unmanned aerial vehicles (UAVs) equipped with image sensors, which have been widely used in various fields such as construction, agriculture, and disaster management, can obtain images at the millimeter to decimeter scale. Useful tools that produce realistic surface models using 3D reconstruction software based on computer vision technologies are generally used to produce datasets from acquired images using UAVs. However, it is difficult to obtain the feature points from surfaces with limited texture, such as new asphalt or concrete, or detect the ground in areas such as forests, which are commonly concealed by vegetation. A promising method to address such issues is the use of UAV-equipped laser scanners. Recently, low and high performance products that use direct georeferencing devices integrated with laser scanners have been available. Moreover, there have been numerous reports regarding the various applications of UAVs equipped with laser scanners; however, these reports only discuss UAVs as measuring devices. Therefore, to understand the functioning of UAVs equipped with laser scanners, we investigated the theoretical accuracy of the survey grade laser scanner unit from the viewpoint of photogrammetry. We evaluated the performance of the VUX-1HA laser scanner equipped on a Skymatix X-LS1 UAV at a construction site. We presented the theoretical values obtained using the observation equations and results of the accuracy aspects of the acquired data in terms of height.


2013 ◽  
Vol 14 (2) ◽  
pp. 265-268 ◽  
Author(s):  
Naveen S Yadav ◽  
Teerthesh Jain ◽  
Amrita Pandita ◽  
SMA Feroz ◽  
Pradeep LNU ◽  
...  

ABSTRACT Aim Aim of the present study was to comparatively evaluate dimensional accuracy of newely introduced elastomeric impression material after repeated pours at different time intervals. Materials and methods In the present study a total of 20 (10 + 10) impressions of master model were made from vinyl polyether silicone and vinyl polysiloxane impression material. Each impression was repeatedly poured at 1, 24 hours and 14 days. Therefore, a total of 60 casts were obtained. Casts obtained were scanned with three-dimensional (3D) laser scanner and measurements were done. Results Vinyl polyether silicone produced overall undersized dies, with greatest change being 0.14% only after 14 days. Vinyl polysiloxane produced smaller dies after 1 and 24 hours and larger dies after 14 days, differing from master model by only 0.07% for the smallest die and to 0.02% for the largest die. Conclusion All the deviations measured from the master model with both the impression materials were within a clinically acceptable range. Clinical significance In a typical fixed prosthodontic treatment accuracy of prosthesis is critical as it determines the success, failure and the prognosis of treatment including abutments. This is mainly dependent upon fit of prosthesis which in turn is dependent on dimensional accuracy of dies, poured from elastomeric impressions. How to cite this article Pandita A, Jain T, Yadav NS, Feroz SMA, Pradeep, Diwedi A. Evaluation and Comparison of Dimensional Accuracy of Newly Introduced Elastomeric Impression Material using 3D Laser Scanners: An in vitro Study. J Contemp Dent Pract 2013;14(2):265-268.


Sign in / Sign up

Export Citation Format

Share Document