scholarly journals CENTIMETER-LEVEL, ROBUST GNSS-AIDED INERTIAL POST-PROCESSING FOR MOBILE MAPPING WITHOUT LOCAL REFERENCE STATIONS

Author(s):  
J. J. Hutton ◽  
N. Gopaul ◽  
X. Zhang ◽  
J. Wang ◽  
V. Menon ◽  
...  

For almost two decades mobile mapping systems have done their georeferencing using Global Navigation Satellite Systems (GNSS) to measure position and inertial sensors to measure orientation. In order to achieve cm level position accuracy, a technique referred to as post-processed carrier phase differential GNSS (DGNSS) is used. For this technique to be effective the maximum distance to a single Reference Station should be no more than 20 km, and when using a network of Reference Stations the distance to the nearest station should no more than about 70 km. This need to set up local Reference Stations limits productivity and increases costs, especially when mapping large areas or long linear features such as roads or pipelines. <br><br> An alternative technique to DGNSS for high-accuracy positioning from GNSS is the so-called Precise Point Positioning or PPP method. In this case instead of differencing the rover observables with the Reference Station observables to cancel out common errors, an advanced model for every aspect of the GNSS error chain is developed and parameterized to within an accuracy of a few cm. The Trimble Centerpoint RTX positioning solution combines the methodology of PPP with advanced ambiguity resolution technology to produce cm level accuracies without the need for local reference stations. It achieves this through a global deployment of highly redundant monitoring stations that are connected through the internet and are used to determine the precise satellite data with maximum accuracy, robustness, continuity and reliability, along with advance algorithms and receiver and antenna calibrations. <br><br> This paper presents a new post-processed realization of the Trimble Centerpoint RTX technology integrated into the Applanix POSPac MMS GNSS-Aided Inertial software for mobile mapping. Real-world results from over 100 airborne flights evaluated against a DGNSS network reference are presented which show that the post-processed Centerpoint RTX solution agrees with the DGNSS solution to better than 2.9 cm RMSE Horizontal and 5.5 cm RMSE Vertical. Such accuracies are sufficient to meet the requirements for a majority of airborne mapping applications.

Author(s):  
J. J. Hutton ◽  
N. Gopaul ◽  
X. Zhang ◽  
J. Wang ◽  
V. Menon ◽  
...  

For almost two decades mobile mapping systems have done their georeferencing using Global Navigation Satellite Systems (GNSS) to measure position and inertial sensors to measure orientation. In order to achieve cm level position accuracy, a technique referred to as post-processed carrier phase differential GNSS (DGNSS) is used. For this technique to be effective the maximum distance to a single Reference Station should be no more than 20 km, and when using a network of Reference Stations the distance to the nearest station should no more than about 70 km. This need to set up local Reference Stations limits productivity and increases costs, especially when mapping large areas or long linear features such as roads or pipelines. <br><br> An alternative technique to DGNSS for high-accuracy positioning from GNSS is the so-called Precise Point Positioning or PPP method. In this case instead of differencing the rover observables with the Reference Station observables to cancel out common errors, an advanced model for every aspect of the GNSS error chain is developed and parameterized to within an accuracy of a few cm. The Trimble Centerpoint RTX positioning solution combines the methodology of PPP with advanced ambiguity resolution technology to produce cm level accuracies without the need for local reference stations. It achieves this through a global deployment of highly redundant monitoring stations that are connected through the internet and are used to determine the precise satellite data with maximum accuracy, robustness, continuity and reliability, along with advance algorithms and receiver and antenna calibrations. <br><br> This paper presents a new post-processed realization of the Trimble Centerpoint RTX technology integrated into the Applanix POSPac MMS GNSS-Aided Inertial software for mobile mapping. Real-world results from over 100 airborne flights evaluated against a DGNSS network reference are presented which show that the post-processed Centerpoint RTX solution agrees with the DGNSS solution to better than 2.9 cm RMSE Horizontal and 5.5 cm RMSE Vertical. Such accuracies are sufficient to meet the requirements for a majority of airborne mapping applications.


Sensors ◽  
2020 ◽  
Vol 20 (5) ◽  
pp. 1320
Author(s):  
Yuan Du ◽  
Guanwen Huang ◽  
Qin Zhang ◽  
Yang Gao ◽  
Yuting Gao

The real-time kinematic (RTK) positioning technique of global navigation satellite systems (GNSS) has been widely used for deformation monitoring in the past several decades. The RTK technique can provide relative displacements in a local reference frame defined by a highly stable reference station. However, the traditional RTK solution does not account for reference stations that experience displacement. This presents a challenge for establishing a near real-time GNSS monitoring system, as since the displacement of a reference station can be easily misinterpreted as a sign of rapid movement at the monitoring station. In this study, based on the reference observations in different time domains, asynchronous and synchronous RTK are proposed and applied together to address this issue, providing more reliable displacement information. Using the asynchronously generated time difference of a reference frame, the proposed approach can detect whether a measured displacement has occurred in the reference or the monitoring station in the current epoch. This allows for the separation of reference station movements from monitoring station movements. The results based on both simulated and landslide monitoring data demonstrate that the proposed method can provide reliable displacement determinations, which are critical in deformation monitoring applications, such as the early warning of landslides.


2020 ◽  
Vol 164 ◽  
pp. 03052
Author(s):  
Volodymir Kharchenko ◽  
Valeriy Konin ◽  
Olexiy Pogurelsky ◽  
Ekaterina Stativa

The goal of the research is to develop a of Global Navigation Satellite Systems quality monitoring methodology based on available equipment in the satellite navigation laboratory of the National Aviation University (Kyiv, Ukraine). For successful the goal achievement it is necessary to solve follow list of tasks: to determine the composition of the necessary equipment and order of it installing and connection; to develop the necessary software for processing received GNSS data; to estimate the GNSS characteristics with the help of experimental data. The primary focus of this research is on the following characteristics: accuracy (in terms of deviation coordinates in horizontal and vertical planes from the coordinates of the reference station and numerical values in meters); integrity information (summarized in the form of horizontal and Stanford plots); overall availability of service – measured as the availability of signals meeting the requirements for instrumented approaches with vertical guidance (APV) APV-1, APV-2, and Category 1 (CAT-1) precision approaches to runways. The main result of this research is developing software that could be applied for continuous monitoring of GNSS performances. The possibilities of it were successfully tested with the help of experimental data received from GPS and Galileo satellites.


2009 ◽  
Vol 5 (H15) ◽  
pp. 216-216
Author(s):  
Harald Schuh ◽  
Johannes Boehm ◽  
Sigrid Englich ◽  
Axel Nothnagel

AbstractVery Long Baseline Interferometry (VLBI) is the only space geodetic technique which is capable of estimating the Earth's phase of rotation, expressed as Universal Time UT1, over time scales of a few days or longer. Satellite-observing techniques like the Global Navigation Satellite Systems (GNSS) are suffering from the fact that Earth rotation is indistinguishable from a rotation of the satellite orbit nodes, which requires the imposition of special procedures to extract UT1 or length of day information. Whereas 24 hour VLBI network sessions are carried out at about three days per week, the hour-long one-baseline intensive sessions (‘Intensives’) are observed from Monday to Friday (INT1) on the baseline Wettzell (Germany) to Kokee Park (Hawaii, U.S.A.), and from Saturday to Sunday on the baseline Tsukuba (Japan) to Wettzell (INT2). Additionally, INT3 sessions are carried out on Mondays between Wettzell, Tsukuba, and Ny-Alesund (Norway), and ultra-rapid e-Intensives between E! urope and Japan also include the baseline Metsähovi (Finland) to Kashima (Japan). The Intensives have been set up to determine daily estimates of UT1 and to be used for UT1 predictions. Because of the short duration and the limited number of stations the observations can nowadays be e-transferred to the correlators, or to a node close to the correlator, and the estimates of UT1 are available shortly after the last observation thus allowing the results to be used for prediction purposes.


Author(s):  
P. Jende ◽  
F. Nex ◽  
M. Gerke ◽  
G. Vosselman

Mobile Mapping (MM) has gained significant importance in the realm of high-resolution data acquisition techniques. MM is able to record georeferenced street-level data in a continuous (laser scanners) and/or discrete (cameras) fashion. MM’s georeferencing relies on a conjunction of Global Navigation Satellite Systems (GNSS), Inertial Measurement Units (IMU) and optionally on odometry sensors. While this technique does not pose a problem for absolute positioning in open areas, its reliability and accuracy may be diminished in urban areas where high-rise buildings and other tall objects can obstruct the direct line-of-sight between the satellite and the receiver unit. Consequently, multipath measurements or complete signal outages impede the MM platform’s localisation and may affect the accurate georeferencing of collected data. This paper presents a technique to recover correct orientation parameters for MM imaging platforms by utilising aerial images as an external georeferencing source. This is achieved by a fully automatic registration strategy which takes into account the overall differences between aerial and MM data, such as scale, illumination, perspective and content. Based on these correspondences, MM data can be verified and/or corrected by using an adjustment solution. The registration strategy is discussed and results in a success rate of about 95&amp;thinsp;%.


2020 ◽  
Vol 91 (4) ◽  
pp. 2047-2054 ◽  
Author(s):  
Michael Floyd ◽  
Gareth Funning ◽  
Yuri Fialko ◽  
Rachel Terry ◽  
Thomas Herring

Abstract The Mw 6.4 and Mw 7.1 Ridgecrest, California, earthquakes of July 2019 occurred within 34 hr of each other on conjugate strike-slip faults in the Mojave Desert, just north of the central Garlock fault. Here, we present the results of a survey of 18 Global Navigation Satellite Systems (GNSS) sites conducted in the immediate aftermath of the earthquakes, including five sites that recorded the motion of the second earthquake after having been set up immediately following the first, as well as processed results from continuous GNSS sites throughout the region. Our field work in response to the earthquakes provides additional constraints on the ground displacement due to both earthquakes, complementing data from a spatially sparser network of continuously recording GNSS sites in the area, as well as temporally sparser Interferometric Synthetic Aperture Radar data that were able to capture a combined deformation signal from the two earthquakes.


2017 ◽  
Vol 66 (2) ◽  
pp. 253-258
Author(s):  
Selma Zengin Kazancı ◽  
Emine Tanır Kayıkçı

Abstract In recent years, Global Navigation Satellite Systems (GNSS) have gained great importance in terms of the benefi ts it provides such as precise geodetic point positioning, determining crustal deformations, navigation, vehicle monitoring systems and meteorological applications etc. As in Turkey, for this purpose, each country has set up its own GNSS station networks like Turkish National Permanent RTK Network analyzed precise station coordinates and velocities together with the International GNSS Service, Turkish National Fundamental GPS Network and Turkish National Permanent GNSS Network (TNPGN) stations not only are utilized as precise positioning but also GNSS meteorology studies so total number of stations are increased. This work is related to the reactivated of the TRAB IGS station which was established in Karadeniz Technical University, Department of Geomatics Engineering. Within the COST ES1206 Action (GNSS4SWEC) KTU analysis center was established and Trop-NET system developed by Geodetic Observatory Pecny (GOP, RIGTC) in order to troposphere monitoring. The project titled “Using Regional GNSS Networks to Strengthen Severe Weather Prediction” was accepted to the scientifi c and technological research council of Turkey (TUBITAK). With this project, we will design 2 new constructed GNSS reference station network. Using observation data of network, we will compare water vapor distribution derived by GNSS Meteorology and GNSS Tomography. At this time, KTU AC was accepted as E-GVAP Analysis Centre in December 2016. KTU reference station is aimed to be a member of the EUREF network with these studies.


2019 ◽  
Vol 91 (4) ◽  
pp. 1943-1951 ◽  
Author(s):  
Diego Melgar ◽  
Timothy I. Melbourne ◽  
Brendan W. Crowell ◽  
Jianghui Geng ◽  
Walter Szeliga ◽  
...  

Abstract Traditional real-time (RT) seismology has relied on inertial sensors to characterize ground motions and earthquake sources, particularly for hazards applications such as warning systems. In the past decade, a revolution in high-rate, RT Global Navigation Satellite Systems (GNSS) displacement has provided a new source of data to augment traditional measurement devices. The Ridgecrest, California, earthquake sequence in 2019 provided one of the most complete recordings of RT-GNSS displacements to date, helping aid in an initial source characterization over the first few days. In this article, we analyze and make available the archived RT displacement streams and compare their performance to postprocessed results, which we also provide. We find good agreement for all stations showing a noticeable signal. This demonstrates that simple modeling in RT, such as peak ground displacement scaling, would be practically identical to postprocessed results. Similarly, we find good agreement across the full spectral range, from the coseismic offsets (∼0  Hz) to the Nyquist frequency. We also find low latency between the measurement acquisition at the field site and the position calculation at the data center. In aggregate, the performance during the Ridgecrest earthquakes is strong evidence of the viability and usefulness of RT-GNSS as a monitoring tool.


2015 ◽  
Vol 9 (3) ◽  
Author(s):  
You Li ◽  
Xiaoji Niu ◽  
Yahao Cheng ◽  
Chuang Shi ◽  
Naser El-Sheimy

AbstractIntegrated Global Navigation Satellite Systems (GNSS) and Inertial Navigation Systems (INS) are the core of georeferencing Mobile Mapping Systems (MMS) data. Divergence of attitude errors is a dominant issue when an INS has to work as a stand-alone system for extended periods. This issue can be mitigated by taking specific vehicle maneuvers to make attitude errors observable. Since MMS applications are time consuming and costly, it is preferable to design the trajectory and motion of the mapping vehicles in advance, to guarantee the accuracy of the attitude estimation and minimize the cost. This article investigates the estimation accuracy of attitude under different vehicle maneuvers theoretically through the observability analysis method. Both theoretical anal­ysis and tests show that the attitude estimation is significantly related with the type of vehicle maneuvers and motion parameters such as velocity, acceleration, and angular velocity. The motion with varying angular velocities is the most efficient motion to enhance the estimation of all attitude angles; the motion with varying accelerations can improve the yaw and pitch but has no effect on enhancing the roll. The uniform circular motion can improve the roll and pitch but has slight or no impact on enhancing the yaw (depending on the forward accelerometer error, the forward velocity, and the vertical angular velocity); the linear motion with a constant acceleration can improve the yaw (depending on the cross-track accelerometer error and the forward acceleration) and weakly improve the pitch but cannot improve the roll. The physical interpretations of these properties are also provided. The “S”-shaped motion with varying angular velocities is suggested for efficient attitude estimation; however, the circle, or “8”-shaped motion with uniform angular velocity, is not efficient for MMS applications.


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8354
Author(s):  
Américo Magalhães ◽  
Luísa Bastos ◽  
Dalmiro Maia ◽  
José Alberto Gonçalves

The use of GPS positioning and navigation capabilities in mobile phones is present in our daily lives for more than a decade, but never with the centimeter level of precision that can actually be reached with several of the most recent smartphones. The introduction of the new GNSS systems (Global Navigation Satellite Systems), the European system Galileo, is opening new horizons in a wide range of areas that rely on precise georeferencing, namely the mass market smartphones apps. The constant growth of this market has brought new devices with innovative capabilities in hardware and software. The introduction of the Android 7 by Google, allowing access to the GNSS raw code and phase measurements, and the arrival of the new chip from Broadcom BCM47755 providing dual frequency in some smartphones came to revolutionize the positioning performance of these devices as never seen before. The Xiaomi Mi8 was the first smartphone to combine those features, and it is the device used in this work. It is well known that it is possible to obtain centimeter accuracy with this kind of device in relative static positioning mode with distances to a reference station up to a few tens of kilometers, which we also confirm in this paper. However, the main purpose of this work is to show that we can also get good positioning accuracy using long baselines. We used the ability of the Xiaomi Mi8 to get dual frequency code and phase raw measurements from the Galileo and GPS systems, to do relative static positioning in post-processing mode using wide baselines, of more than 100 km, to perform precise surveys. The results obtained were quite interesting with RMSE below 30 cm, showing that this type of smartphone can be easily used as a low-cost device, for georeferencing and mapping applications. This can be quite useful in remote areas where the CORS networks are not dense or even not available.


Sign in / Sign up

Export Citation Format

Share Document