scholarly journals A comparative flood damage and risk impact assessment of land use changes

2021 ◽  
Author(s):  
Karen Gabriels ◽  
Patrick Willems ◽  
Jos Van Orshoven

Abstract. Sustainable flood risk management encompasses the implementation of nature-based solutions to mitigate flood risk. These measures include the establishment of land use types with a high (e.g. forest patches) or low (e.g. sealed surfaces) water retention and infiltration capacity at strategic locations in the catchment. This paper presents an approach for assessing the relative impact of such land use changes on economic flood damages and associated risk. This spatially explicit approach integrates a reference situation, a flood damage model and a rainfall-runoff model, considering runoff re-infiltration and propagation, to determine relative flood risk mitigation or increment related to the implementation of land use change scenarios. The applicability of the framework is illustrated for a 4800 ha undulating catchment in the region of Flanders, Belgium by assessing afforestation of 187.5 ha (3.9 %), located mainly in the valleys, and sealing of 187.5 ha, situated mainly at higher elevations. These scenarios result in a risk reduction of 57 % (100 856 €) for the afforestation scenario and a risk increment of

2002 ◽  
Vol 45 (8) ◽  
pp. 183-190 ◽  
Author(s):  
Arne Tollan

Land-cover change (urbanisation, deforestation, and cultivation) results in increased flood frequency and severity. Mechanisms include reduced infiltration capacity, lower soil porosity, loss of vegetation, and forest clearing, meaning lower evapotranspiration. Major research challenges lie in quantification of effects in terms of flood characteristics under various conditions, ascertaining the combined effects of gradual changes over long time periods, and developing model tools suitable for land-use management. Large floods during the 1990s gave a new focus on these problems. Reference is made to the Norwegian HYDRA research programme on human impacts on floods and flood damage. The paper concludes that land-use change effects on floods are most pronounced at small scale and for frequent flood magnitudes. Model simulations of effects of land-use change can now be used to reduce flood risk. Modern flood management strategies have abandoned the position that dams and dikes are the only answers to mitigating flood disasters. Today, the strategic approach is more often: do not keep the water away from the people, keep people away from the water. Flood management strategies should include flood warnings, efficient communication, risk awareness, civil protection and flood preparedness routines, effective land-use policies, flood risk mapping, … as well as structural measures.


2013 ◽  
Vol 13 (9) ◽  
pp. 2301-2318 ◽  
Author(s):  
A. Beckers ◽  
B. Dewals ◽  
S. Erpicum ◽  
S. Dujardin ◽  
S. Detrembleur ◽  
...  

Abstract. Managing flood risk in Europe is a critical issue because climate change is expected to increase flood hazard in many european countries. Beside climate change, land use evolution is also a key factor influencing future flood risk. The core contribution of this paper is a new methodology to model residential land use evolution. Based on two climate scenarios ("dry" and "wet"), the method is applied to study the evolution of flood damage by 2100 along the river Meuse. Nine urbanization scenarios were developed: three of them assume a "current trend" land use evolution, leading to a significant urban sprawl, while six others assume a dense urban development, characterized by a higher density and a higher diversity of urban functions in the urbanized areas. Using damage curves, the damage estimation was performed by combining inundation maps for the present and future 100 yr flood with present and future land use maps and specific prices. According to the dry scenario, the flood discharge is expected not to increase. In this case, land use changes increase flood damages by 1–40%, to €334–462 million in 2100. In the wet scenario, the relative increase in flood damage is 540–630%, corresponding to total damages of €2.1–2.4 billion. In this extreme scenario, the influence of climate on the overall damage is 3–8 times higher than the effect of land use change. However, for seven municipalities along the river Meuse, these two factors have a comparable influence. Consequently, in the "wet" scenario and at the level of the whole Meuse valley in the Walloon region, careful spatial planning would reduce the increase in flood damage by no more than 11–23%; but, at the level of several municipalities, more sustainable spatial planning would reduce future flood damage to a much greater degree.


2021 ◽  
Vol 331 ◽  
pp. 08002
Author(s):  
Rusli HAR ◽  
Aprisal ◽  
Werry Darta Taifur ◽  
Teguh Haria Aditia Putra

Changes in land use in the Air Dingin watershed (DAS) area in Padang City, Indonesia, lead to a decrease in rainwater infiltration volume to the ground. Some land use in the Latung sub-watershed decrease in infiltration capacity with an increase in surface runoff. This research aims to determine the effect of land-use changes on infiltration capacity and surface runoff. Purposive sampling method was used in this research. The infiltration capacity was measured directly in the field using a double-ring infiltrometer, and the data was processed using the Horton model. The obtained capacity was quantitatively classified using infiltration zoning. Meanwhile, the Hydrologic Engineering Center - Hydrology Modeling System with the Synthetic Unit Hydrograph- Soil Conservation Service -Curve Number method was used to analyze the runoff discharge. The results showed that from the 13 measurement points carried out, the infiltration capacity ranges from 0.082 - 0.70 cm/minute or an average of 0.398 cm/minute, while the rainwater volume is approximately 150,000 m3/hour/km2. Therefore, the soil infiltration capacity in the Latung sub-watershed is in zone VI-B or very low. This condition had an impact on changes in runoff discharge in this area, from 87.84 m3/second in 2010 to 112.8 m3/second in 2020 or a nail of 22.13%. Based on the results, it is concluded that changes in the land led to low soil infiltration capacity, thereby leading to an increase in surface runoff.


Author(s):  
Aivars Tērauds ◽  
Oļgerts Nikodemus ◽  
Inga Rasa ◽  
Simons Bells

Landscape Ecological Structure in the Eastern Part of the North Vidzeme Biosphere Reserve, Latvia Latvia is a country where the forest area has increased and habitat fragmentation has reversed compared with many other European countries. In order to examine the effect of this expansion on biodiversity, vegetation maps dating from 2002 and the years 1930-1936 were used for comparative landscape structure analyses while archive materials from forest plans, and data from the national forest management database were used for land use analysis. Four landscape ecoregions in the eastern side of the North Vidzeme Biosphere Reserve were selected for analysis. Landscape structure indicators derived from landscape ecology were used for the ecological assessment of land use changes. The total number of forest patches had decreased over the study period, but mean patch size had increased for all types of landscape element. This general change was found to vary between different landscape units in the study area. The biggest change in the area of forest patches occurred in the Rūjiena drumlin field, where the amount of forest patches decreased least and forest area increased the most. This study showed that the internal structure of the forest matrix changed substantially. This finding has implications for biodiversity protection if this trend of land use change continues.


2016 ◽  
Vol 16 (11) ◽  
pp. 2357-2371 ◽  
Author(s):  
Patric Kellermann ◽  
Christine Schönberger ◽  
Annegret H. Thieken

Abstract. Experience has shown that river floods can significantly hamper the reliability of railway networks and cause extensive structural damage and disruption. As a result, the national railway operator in Austria had to cope with financial losses of more than EUR 100 million due to flooding in recent years. Comprehensive information on potential flood risk hot spots as well as on expected flood damage in Austria is therefore needed for strategic flood risk management. In view of this, the flood damage model RAIL (RAilway Infrastructure Loss) was applied to estimate (1) the expected structural flood damage and (2) the resulting repair costs of railway infrastructure due to a 30-, 100- and 300-year flood in the Austrian Mur River catchment. The results were then used to calculate the expected annual damage of the railway subnetwork and subsequently analysed in terms of their sensitivity to key model assumptions. Additionally, the impact of risk aversion on the estimates was investigated, and the overall results were briefly discussed against the background of climate change and possibly resulting changes in flood risk. The findings indicate that the RAIL model is capable of supporting decision-making in risk management by providing comprehensive risk information on the catchment level. It is furthermore demonstrated that an increased risk aversion of the railway operator has a marked influence on flood damage estimates for the study area and, hence, should be considered with regard to the development of risk management strategies.


2021 ◽  
Author(s):  
Rebecca Alexandre ◽  
Iain Willis

<p>The re/insurance, banking and mortgage sectors play an essential role in facilitating economic stability. As climate change-related financial risks increase, there has long been a need for tools that contribute to the global industry’s current and future flood risk resiliency. Recognising this gap, JBA Risk Management has pioneered use of climate model data for rapidly deriving future flood risk metrics to support risk-reflective pricing strategies and mortgage analysis for Hong Kong.</p><p>JBA’s established method uses daily temporal resolution precipitation and surface air temperature Regional Climate Model (RCM) data from the Earth System Grid Federation’s CORDEX experiment. Historical and future period RCM data were processed for Representative Concentration Pathways (RCPs) 2.6 and 8.6, and time horizons 2046-2050 and 2070-2080 and used to develop fluvial and pluvial hydrological model change factors for Hong Kong. These change factors were applied to baseline fluvial and pluvial flood depths and extents, extracted from JBA’s high resolution 30m Hong Kong Flood Map. From these, potential changes in flood event frequency and severity for each RCP and time horizon combination were estimated.</p><p>The unique flood frequency and severity profiles for each flood type were then analysed with customised vulnerability functions, linking water depth to expected damage over time for residential and commercial building risks. This resulted in quantitative fluvial and pluvial flood risk metrics for Hong Kong.</p><p>Newly released, Hong Kong Climate Change Pricing Data is already in use by financial institutions. When combined with property total sum insured data, this dataset provides the annualised cost of flood damage for a range of future climate scenarios. For the first time, our industry has a tool to quantify baseline and future flood risk and set risk-reflective pricing for Hong Kong portfolios.</p><p>JBA’s method is adaptable for global use and underwriting tools are already available for the UK and Australia with the aim of improving future financial flood risk mitigation and management. This presentation will outline the method, provide a comparison of baseline and climate change flood impacts for Hong Kong and discuss the wider implications for our scientific and financial industries.</p>


Proceedings ◽  
2020 ◽  
Vol 30 (1) ◽  
pp. 62
Author(s):  
Zahra Kalantari ◽  
Johanna Sörensen

The densification of urban areas has raised concerns over increased pluvial flooding. Flood risk in urban areas might increase under the impact of land use changes. Urbanisation involves the conversion of natural areas to impermeable areas, causing lower infiltration rates and increased runoff. When high-intensity rainfall exceeds the capacity of an urban drainage system, the runoff causes pluvial flooding in low-laying areas. In the present study, a long time series (i.e., 20 years) of geo-referenced flood claims from property owners has been collected and analysed in detail to assess flood risk as it relates to land use changes in urban areas. The flood claim data come from property owners with flood insurance that covers property loss from overland flooding, groundwater intrusion through basement walls, as well as flooding from drainage systems; these data serve as a proxy of flood severity. The spatial relationships between land use change and flood occurrences in different urban areas were analysed. Special emphasis was placed on examining how nature-based solutions and blue-green infrastructure relate to flood risk. The relationships are defined by a statistical method explaining the tendencies whereby land use change affects flood risk.


2020 ◽  
Vol 12 (5) ◽  
pp. 1955
Author(s):  
Lei Wan ◽  
Huiyu Liu ◽  
Haibo Gong ◽  
Yujia Ren

Vegetation dynamics is thought to be affected by climate and land use changes. However, how the effects vary after abrupt vegetation changes remains unclear. Based on the Mann-Kendall trend and abrupt change analysis, we monitored vegetation dynamics and its abrupt change in the Yangtze River delta during 1982–2016. With the correlation analysis, we revealed the relationship of vegetation dynamics with climate changes (temperature and precipitation) pixel-by-pixel and then with land use changes analysis we studied the effects of land use changes (unchanged or changed land use) on their relationship. Results showed that: (1) the Normalized Vegetation Index (NDVI) during growing season that is represented as GSN (growing season NDVI) showed an overall increasing trend and had an abrupt change in 2000. After then, the area percentages with decreasing GSN trend increased in cropland and built-up land, mainly located in the eastern, while those with increasing GSN trend increased in woodland and grassland, mainly located in the southern. Changed land use, except the land conversions from/to built-up land, is more favor for vegetation greening than unchanged land use (2) after abrupt change, the significant positive correlation between precipitation and GSN increased in all unchanged land use types, especially for woodland and grassland (natural land use) and changed land use except built-up land conversion. Meanwhile, the insignificant positive correlation between temperature and GSN increased in woodland, while decreased in the cropland and built-up land in the northwest (3) after abrupt change, precipitation became more important and favor, especially for natural land use. However, temperature became less important and favor for all land use types, especially for built-up land. This research indicates that abrupt change analysis will help to effectively monitor vegetation trend and to accurately assess the relationship of vegetation dynamics with climate and land use changes.


2014 ◽  
Vol 5 (2) ◽  
pp. 204-215 ◽  
Author(s):  
M. Velasco ◽  
À. Cabello ◽  
I. Escaler ◽  
J. I. Barredo ◽  
A. Barrera-Escoda

Global change, including climate, land-use and socio-economic changes, is expected to increase the stress on the entire water cycle. In the Mediterranean region, extreme events are likely to increase due to climate change. This work, framed in the EC Seventh Framework Programme project IMPRINTS, presents a methodology to obtain future flood risk maps using climate and land-use scenarios, identifying the new potential risk zones. The implementation of this methodology is applied to the Llobregat river basin case study. Two different special report on emission scenarios are used, and although the uncertainties are high, the results obtained are coincident: an increase of flood risk is observed in the whole Low Llobregat area. The climate changes affect the basin globally, increasing the risk homogeneously within the area considered. On the other hand, land-use changes represent urban growth in the floodplains, and hence, local risk increases are found in these spots.


Sign in / Sign up

Export Citation Format

Share Document