scholarly journals A model for large-amplitude internal solitary waves with trapped cores

2010 ◽  
Vol 17 (4) ◽  
pp. 303-318 ◽  
Author(s):  
K. R. Helfrich ◽  
B. L. White

Abstract. Large-amplitude internal solitary waves in continuously stratified systems can be found by solution of the Dubreil-Jacotin-Long (DJL) equation. For finite ambient density gradients at the surface (bottom) for waves of depression (elevation) these solutions may develop recirculating cores for wave speeds above a critical value. As typically modeled, these recirculating cores contain densities outside the ambient range, may be statically unstable, and thus are physically questionable. To address these issues the problem for trapped-core solitary waves is reformulated. A finite core of homogeneous density and velocity, but unknown shape, is assumed. The core density is arbitrary, but generally set equal to the ambient density on the streamline bounding the core. The flow outside the core satisfies the DJL equation. The flow in the core is given by a vorticity-streamfunction relation that may be arbitrarily specified. For simplicity, the simplest choice of a stagnant, zero vorticity core in the frame of the wave is assumed. A pressure matching condition is imposed along the core boundary. Simultaneous numerical solution of the DJL equation and the core condition gives the exterior flow and the core shape. Numerical solutions of time-dependent non-hydrostatic equations initiated with the new stagnant-core DJL solutions show that for the ambient stratification considered, the waves are stable up to a critical amplitude above which shear instability destroys the initial wave. Steadily propagating trapped-core waves formed by lock-release initial conditions also agree well with the theoretical wave properties despite the presence of a "leaky" core region that contains vorticity of opposite sign from the ambient flow.

2008 ◽  
Vol 20 (12) ◽  
pp. 126601 ◽  
Author(s):  
M. Carr ◽  
D. Fructus ◽  
J. Grue ◽  
A. Jensen ◽  
P. A. Davies

2021 ◽  
Author(s):  
Marek Stastna ◽  
Aaron Coutino ◽  
Ryan Walter

Abstract. Large amplitude internal waves in the ocean propagate in a dynamic, highly variable environment with changes in background current, local depth, and stratification. The Dubreil-Jacotin-Long, or DJL, theory of exact internal solitary waves can account for a background shear, doing so at a cost of algebraic complexity and a lack of a mathematical proof of algorithm convergence. Waves in the presence of shear that is strong enough to preclude theoretical calculations have been reported in observations. We report on high resolution simulations of stratified adjustment in the presence of strong shear currents. We find instances of large amplitude solitary-like waves with recirculating cores in parameter regimes for which DJL theory fails, and of wave types that are completely different in shape from classical internal solitary waves. Both are spontaneously generated from general initial conditions. Some of the waves observed are associated with critical layers, but others exhibit a propagation speed that is very near the background current maximum. As such they are not freely propagating solitary waves, and a DJL theory would not apply. We thus provide a partial reconciliation between observations and theory.


2009 ◽  
Vol 629 ◽  
pp. 73-85 ◽  
Author(s):  
WOOYOUNG CHOI ◽  
RICARDO BARROS ◽  
TAE-CHANG JO

The strongly nonlinear long-wave model for large amplitude internal waves in a two-layer system is regularized to eliminate shear instability due to the wave-induced velocity jump across the interface. The model is written in terms of the horizontal velocities evaluated at the top and bottom boundaries instead of the depth-averaged velocities, and it is shown through local stability analysis that internal solitary waves are locally stable to perturbations of arbitrary wavelengths if the wave amplitudes are smaller than a critical value. For a wide range of depth and density ratios pertinent to oceanic conditions, the critical wave amplitude is close to the maximum wave amplitude and the regularized model is therefore expected to be applicable to the strongly nonlinear regime. The regularized model is solved numerically using a finite-difference method and its numerical solutions support the results of our linear stability analysis. It is also shown that the solitary wave solution of the regularized model, found numerically using a time-dependent numerical model, is close to the solitary wave solution of the original model, confirming that the two models are asymptotically equivalent.


2018 ◽  
Vol 840 ◽  
pp. 342-378 ◽  
Author(s):  
Pierre-Yves Passaggia ◽  
Karl R. Helfrich ◽  
Brian L. White

The dynamics of perturbations to large-amplitude internal solitary waves (ISWs) in two-layered flows with thin interfaces is analysed by means of linear optimal transient growth methods. Optimal perturbations are computed through direct–adjoint iterations of the Navier–Stokes equations linearized around inviscid, steady ISWs obtained from the Dubreil-Jacotin–Long (DJL) equation. Optimal perturbations are found as a function of the ISW phase velocity $c$ (alternatively amplitude) for one representative stratification. These disturbances are found to be localized wave-like packets that originate just upstream of the ISW self-induced zone (for large enough $c$) of potentially unstable Richardson number, $Ri<0.25$. They propagate through the base wave as coherent packets whose total energy gain increases rapidly with $c$. The optimal disturbances are also shown to be relevant to DJL solitary waves that have been modified by viscosity representative of laboratory experiments. The optimal disturbances are compared to the local Wentzel–Kramers–Brillouin (WKB) approximation for spatially growing Kelvin–Helmholtz (K–H) waves through the $Ri<0.25$ zone. The WKB approach is able to capture properties (e.g. carrier frequency, wavenumber and energy gain) of the optimal disturbances except for an initial phase of non-normal growth due to the Orr mechanism. The non-normal growth can be a substantial portion of the total gain, especially for ISWs that are weakly unstable to K–H waves. The linear evolution of Gaussian packets of linear free waves with the same carrier frequency as the optimal disturbances is shown to result in less energy gain than found for either the optimal perturbations or the WKB approximation due to non-normal effects that cause absorption of disturbance energy into the leading face of the wave. Two-dimensional numerical calculations of the nonlinear evolution of optimal disturbance packets leads to the generation of large-amplitude K–H billows that can emerge on the leading face of the wave and that break down into turbulence in the lee of the wave. The nonlinear calculations are used to derive a slowly varying model of ISW decay due to repeated encounters with optimal or free wave packets. Field observations of unstable ISW by Moum et al. (J. Phys. Oceanogr., vol. 33 (10), 2003, pp. 2093–2112) are consistent with excitation by optimal disturbances.


2021 ◽  
Vol 28 (3) ◽  
pp. 445-465
Author(s):  
Yi Gong ◽  
Haibin Song ◽  
Zhongxiang Zhao ◽  
Yongxian Guan ◽  
Kun Zhang ◽  
...  

Abstract. Shoaling internal solitary waves near the Dongsha Atoll in the South China Sea dissipate their energy and enhance diapycnal mixing, which have an important impact on the oceanic environment and primary productivity. The enhanced diapycnal mixing is patchy and instantaneous. Evaluating its spatiotemporal distribution requires comprehensive observation data. Fortunately, seismic oceanography meets the requirements, thanks to its high spatial resolution and large spatial coverage. In this paper, we studied three internal solitary waves in reversing polarity near the Dongsha Atoll and calculated their spatial distribution of diapycnal diffusivity. Our results show that the average diffusivities along three survey lines are 2 orders of magnitude larger than the open-ocean value. The average diffusivity in internal solitary waves with reversing polarity is 3 times that of the non-polarity reversal region. The diapycnal diffusivity is higher at the front of one internal solitary wave and gradually decreases from shallow to deep water in the vertical direction. Our results also indicate that (1) the enhanced diapycnal diffusivity is related to reflection seismic events, (2) convective instability and shear instability may both contribute to the enhanced diapycnal mixing in the polarity-reversing process, and (3) the difference between our results and Richardson-number-dependent turbulence parameterizations is about 2–3 orders of magnitude, but its vertical distribution is almost the same.


2000 ◽  
Vol 30 (9) ◽  
pp. 2172-2185 ◽  
Author(s):  
Vasiliy Vlasenko ◽  
Peter Brandt ◽  
Angelo Rubino

1993 ◽  
Vol 247 ◽  
pp. 39-63 ◽  
Author(s):  
Marc Spiegelman

Using numerical schemes, this paper demonstrates how viscous resistance to volume changes modifies the simplest shock wave solutions presented in Part 1. For an initial condition chosen to form a step-function shock, viscous resistance causes the shock to disperse into a rank-ordered wavetrain of solitary waves. Large obstructions in flux produce large-amplitude, slow-moving wavetrains while smaller shocks shed small-amplitude waves. While the viscous resistance term is initially important over a narrow boundary layer, information about obstructions in the flux can propagate over many compaction lengths through the formation of non-zero wavelength porosity waves. For large-amplitude shocks, information can actually propagate backwards relative to the matrix. The physics of dispersion is discussed and a physical argument is presented to parameterize the amplitude of the wavetrain as a function of the amplitude of the predicted shock. This quantitative relationship between the prediction of shocks and the development of solitary waves also holds when mass transfer between solid and liquid is included. Melting causes solitary waves to decrease in amplitude but the process is reversible and freezing can cause small perturbations in the fluid flux to amplify into large-amplitude waves. These model problems show that the equations governing volume changes of the matrix are inherently time dependent. Perturbations to steady-state solutions propagate as nonlinear waves and these problems demonstrate several initial conditions that do not relax to steady state. If these equations describe processes such as magma migration in the Earth, then these processes should be inherently episodic in space and time.


2017 ◽  
Author(s):  
Oleg G. Derzho

Abstract. It is analytically shown how competing nonlinearities yield new multiscaled (multi humped) structures for internal solitary waves in shallow fluids. These solitary waves only exist for large amplitudes beyond the limit of applicability of the KdV equation or its usual extensions. Multiscaling phenomenon exists or do not exist for almost identical density profiles. Trapped core inside the wave prevents appearance of such multiple scales within the core area. It is anticipated that multiscaling phenomena exist for solitary waves in various physical origins.


Sign in / Sign up

Export Citation Format

Share Document