scholarly journals Integrated water resources management approach in mitigating the potential impacts of climate change on hydrology in Gurara reservoir catchment, Northwest Nigeria

Author(s):  
Ifie-emi Francis Oseke ◽  
Geophery Kwame Anornu ◽  
Kwaku Amaning Adjei ◽  
Martin Obada Eduvie

Abstract. The strategies and actions in the management of African River Basins in a warming climate environment have been studied. Using the Gurara Reservoir Catchment in North-West Nigeria as a case study, summations were proposed using hypothetical climate scenarios considering the Global Climate Models prediction and linear trend of the data. Four (4) proposed scenarios of temperature increase (1 % and 2 %) coupled with a decrease in precipitation of (−5 % and −10 %) were combined and applied for the study area. The Water Evaluation and Planning Tool was used to model and evaluates the impact of the earth's rising temperature and declining rainfall on the hydrology and availability of water by investigating its resilience to climate change. Modelling results indicate a reduction in available water within the study area from 4.3 % to 3.5 % compared to the baseline with no climate change scenario, revealing the current water management strategy as not sustainable, uncoordinated, and resulting in overexploitation. The findings could assist in managing future water resources in the catchment by accentuating the need to put in place appropriate adaptation measures to foster resilience to climate change. Practically, it is pertinent to shape more effective policies and regulations within catchments for effective water resources management in reducing water shortage as well as achieving downstream water needs and power benefit in thefuture, while also allowing flexibility in the operation of a reservoir with the ultimate goal of adapting to climate change.

2015 ◽  
Vol 16 (2) ◽  
pp. 762-780 ◽  
Author(s):  
Pablo A. Mendoza ◽  
Martyn P. Clark ◽  
Naoki Mizukami ◽  
Andrew J. Newman ◽  
Michael Barlage ◽  
...  

Abstract The assessment of climate change impacts on water resources involves several methodological decisions, including choices of global climate models (GCMs), emission scenarios, downscaling techniques, and hydrologic modeling approaches. Among these, hydrologic model structure selection and parameter calibration are particularly relevant and usually have a strong subjective component. The goal of this research is to improve understanding of the role of these decisions on the assessment of the effects of climate change on hydrologic processes. The study is conducted in three basins located in the Colorado headwaters region, using four different hydrologic model structures [PRMS, VIC, Noah LSM, and Noah LSM with multiparameterization options (Noah-MP)]. To better understand the role of parameter estimation, model performance and projected hydrologic changes (i.e., changes in the hydrology obtained from hydrologic models due to climate change) are compared before and after calibration with the University of Arizona shuffled complex evolution (SCE-UA) algorithm. Hydrologic changes are examined via a climate change scenario where the Community Climate System Model (CCSM) change signal is used to perturb the boundary conditions of the Weather Research and Forecasting (WRF) Model configured at 4-km resolution. Substantial intermodel differences (i.e., discrepancies between hydrologic models) in the portrayal of climate change impacts on water resources are demonstrated. Specifically, intermodel differences are larger than the mean signal from the CCSM–WRF climate scenario examined, even after the calibration process. Importantly, traditional single-objective calibration techniques aimed to reduce errors in runoff simulations do not necessarily improve intermodel agreement (i.e., same outputs from different hydrologic models) in projected changes of some hydrological processes such as evapotranspiration or snowpack.


2010 ◽  
Vol 14 (7) ◽  
pp. 1247-1258 ◽  
Author(s):  
W. Buytaert ◽  
M. Vuille ◽  
A. Dewulf ◽  
R. Urrutia ◽  
A. Karmalkar ◽  
...  

Abstract. Climate change is expected to have a large impact on water resources worldwide. A major problem in assessing the potential impact of a changing climate on these resources is the difference in spatial scale between available climate change projections and water resources management. Regional climate models (RCMs) are often used for the spatial disaggregation of the outputs of global circulation models. However, RCMs are time-intensive to run and typically only a small number of model runs is available for a certain region of interest. This paper investigates the value of the improved representation of local climate processes by a regional climate model for water resources management in the tropical Andes of Ecuador. This region has a complex hydrology and its water resources are under pressure. Compared to the IPCC AR4 model ensemble, the regional climate model PRECIS does indeed capture local gradients better than global models, but locally the model is prone to large discrepancies between observed and modelled precipitation. It is concluded that a further increase in resolution is necessary to represent local gradients properly. Furthermore, to assess the uncertainty in downscaling, an ensemble of regional climate models should be implemented. Finally, translating the climate variables to streamflow using a hydrological model constitutes a smaller but not negligible source of uncertainty.


Water ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 2516
Author(s):  
Yoonji Kim ◽  
Jieun Yu ◽  
Kyungil Lee ◽  
Hye In Chung ◽  
Hyun Chan Sung ◽  
...  

Highly concentrated precipitation during the rainy season poses challenges to the South Korean water resources management in efficiently storing and redistributing water resources. Under the new climate regime, water resources management is likely to become more challenging with regards to water-related disaster risk and deterioration of water quality. To alleviate such issues by adjusting management plans, this study examined the impact of climate change on the streamflow in the Bocheongcheon basin of the Geumgang river. A globally accepted hydrologic model, the HEC-HMS model, was chosen for the simulation. By the calibration and the validation processes, the model performance was evaluated to range between “satisfactory” and “very good”. The calibrated model was then used to simulate the future streamflow over six decades from 2041 to 2100 under RCP4.5 and RCP8.5. The results indicated significant increase in the future streamflow of the study site in all months and seasons over the simulation period. Intensification of seasonal differences and fluctuations was projected under RCP 8.5, implying a challenge for water resources managers to secure stable sources of clean water and to prevent water-related disasters. The analysis of the simulation results was applied to suggest possible local adaptive water resources management policy.


2013 ◽  
Vol 17 (2) ◽  
pp. 565-578 ◽  
Author(s):  
J. A. Velázquez ◽  
J. Schmid ◽  
S. Ricard ◽  
M. J. Muerth ◽  
B. Gauvin St-Denis ◽  
...  

Abstract. Over the recent years, several research efforts investigated the impact of climate change on water resources for different regions of the world. The projection of future river flows is affected by different sources of uncertainty in the hydro-climatic modelling chain. One of the aims of the QBic3 project (Québec-Bavarian International Collaboration on Climate Change) is to assess the contribution to uncertainty of hydrological models by using an ensemble of hydrological models presenting a diversity of structural complexity (i.e., lumped, semi distributed and distributed models). The study investigates two humid, mid-latitude catchments with natural flow conditions; one located in Southern Québec (Canada) and one in Southern Bavaria (Germany). Daily flow is simulated with four different hydrological models, forced by outputs from regional climate models driven by global climate models over a reference (1971–2000) and a future (2041–2070) period. The results show that, for our hydrological model ensemble, the choice of model strongly affects the climate change response of selected hydrological indicators, especially those related to low flows. Indicators related to high flows seem less sensitive on the choice of the hydrological model.


2016 ◽  
Vol 8 (2) ◽  
pp. 30 ◽  
Author(s):  
Micah J. Hewer ◽  
William A. Gough

Weather and climate have been widely recognised as having an important influence on tourism and recreational activities. However, the nature of these relationships varies depending on the type, timing and location of these activities. Climate change is expected to have considerable and diverse impacts on recreation and tourism. Nonetheless, the potential impact of climate change on zoo visitation has yet to be assessed in a scientific manner. This case study begins by establishing the baseline conditions and statistical relationship between weather and zoo visitation in Toronto, Canada. Regression analysis, relying on historical weather and visitation data, measured at the daily time scale, formed the basis for this analysis. Climate change projections relied on output produced by Global Climate Models (GCMs) for the Intergovernmental Panel on Climate Change’s 2013 Fifth Assessment Report, ranked and selected using the herein defined Selective Ensemble Approach. This seasonal GCM output was then used to inform daily, local, climate change scenarios, generated using Statistical Down-Scaling Model Version 5.2. A series of seasonal models were then used to assess the impact of projected climate change on zoo visitation. While accounting for the negative effects of precipitation and extreme heat, the models suggested that annual visitation to the zoo will likely increase over the course of the 21st century due to projected climate change: from +8% in the 2020s to +18% by the 2080s, for the least change scenario; and from +8% in the 2020s to +34% in the 2080s, for the greatest change scenario. The majority of the positive impact of projected climate change on zoo visitation in Toronto will likely occur in the shoulder season (spring and fall); with only moderate increases in the off season (winter) and potentially negative impacts associated with the peak season (summer), especially if warming exceeds 3.5 °C.


2010 ◽  
Vol 7 (2) ◽  
pp. 1821-1848 ◽  
Author(s):  
W. Buytaert ◽  
M. Vuille ◽  
A. Dewulf ◽  
R. Urrutia ◽  
A. Karmalkar ◽  
...  

Abstract. Climate change is expected to have a large impact on water resources worldwide. A major problem in assessing the potential impact of a changing climate on these resources is the difference in spatial scale between available climate change projections and water resources management. Regional climate models (RCMs) are often used for the spatial disaggregation of the outputs of global circulation models. However, RCMs are time-intensive to run and typically only a small number of model runs is available for a certain region of interest. This paper investigates the value of the improved representation of local climate processes by a regional climate model for water resources management in the tropical Andes of Ecuador. This region has a complex hydrology and its water resources are under pressure. Compared to the IPCC AR4 model ensemble, the regional climate model PRECIS does indeed capture local gradients better than global models, but locally the model is prone to large discrepancies between observed and modelled precipitation. It is concluded that a further increase in resolution is necessary to represent local gradients properly. Furthermore, to assess the uncertainty in downscaling, an ensemble of regional climate models should be implemented. Finally, translating the climate variables to streamflow using a hydrological model constitutes a smaller but not negligible source of uncertainty.


Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3424
Author(s):  
Juliet Katusiime ◽  
Brigitta Schütt

The water crisis can alternatively be called a governance crisis. Thus, the demand for good water governance to ensure effective water resources management and to attain specific water goals is growing. Many countries subscribe to the Integrated Water Resources Management (IWRM) approach to achieve this goal. The Integrated Water Resources Management approach aims to ensure a process that promotes the coordinated development and management of water, land, and related resources in a drainage basin to maximise economic and social welfare equitably without compromising the sustainability of vital ecosystems. The design of the Integrated Water Resources Management approach, including its pillars and principles, aspires to good water governance and effective resource management. However, empirical studies examining this hypothesis and analysing the impact of the Integrated Water Resources Management approach on water resources governance are limited, especially in developing countries. Therefore, we characterised and compared the water resources governance aspects of two catchments in Uganda’s Lake Albert basin. One of the catchments was exposed to integrated water resources management projects, while the other had no exposure to integrated water resources management projects. Some of the factors that supported the comparability of the two sites included spatial proximity linking into a related hydrological and social-economic setup, common water needs and belonging to the same water administration zone. Comparing both areas led us to analyse whether there was a difference in water resources governance actions, as well as in the quality of water resources governance, under the same overall water management and administrative zone. The data were based on field surveys using questionnaires and information guides in both catchments. The results show that the performance of water resources governance is markedly better in the catchment with Integrated Water Resources Management practices than the base catchment unaffected by these practices. Key themes examined include water resources governance styles, water resources governance systems presence, functionality, the performance of good governance principles, and water resources management effectiveness. The findings contribute to the aspirations for the promotion of integrated water management approaches for improved water resources governance, and the concept that the effectiveness of water resources management measures depends on governance effectiveness. Water governance is significant, as it spells out the power, rights, decisions, and priorities relating to given water resources and communities.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Teressa Negassa Muleta

Abstract Background Several water resources projects are under planning and implementation in the Baro-Akobo basin. Currently, the planning and management of these projects is relied on historical data. So far, hardly any study has addressed water resources management and adaptation measures in the face of changing water balances due to climate change in the basin. The main bottleneck to this has been lack of future climate change scenario base data over the basin. The current study is aimed at developing future climate change scenario for the basin. To this end, Regional Climate Model (RCM) downscaled data for A1B emission scenario was employed and bias corrected at basin level using observed data. Future climate change scenario was developed using the bias corrected RCM output data with the basic objective of producing baseline data for sustainable water resources development and management in the basin. Result The projected future climate shows an increasing trend for both maximum and minimum temperatures; however, for the case of precipitation it does not manifest a systematic increasing or decreasing trend in the next century. The projected mean annual temperature increases from the baseline period by an amount of 1 °C and 3.5 °C respectively, in 2040s and 2090s. Similarly, evapotranspiration has been found to increase to an extent of 25% over the basin. The precipitation is predicted to experience a mean annual decrease of 1.8% in 2040s and an increase of 1.8% in 2090s over the basin for the A1B emission scenario. Conclusion The study resulted in a considerable future change in climatic variables (temperature, precipitation, and evapotranspiration) on the monthly and seasonal basis. These have an implication on hydrologic extremes-drought and flooding, and demands dynamic water resources management. Hence the study gives a valuable base information for water resources planning and managers, particularly for modeling reservoir inflow-climate change relations, to adapt reservoir operation rules to the real-time changing climate.


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1548
Author(s):  
Suresh Marahatta ◽  
Deepak Aryal ◽  
Laxmi Prasad Devkota ◽  
Utsav Bhattarai ◽  
Dibesh Shrestha

This study aims at analysing the impact of climate change (CC) on the river hydrology of a complex mountainous river basin—the Budhigandaki River Basin (BRB)—using the Soil and Water Assessment Tool (SWAT) hydrological model that was calibrated and validated in Part I of this research. A relatively new approach of selecting global climate models (GCMs) for each of the two selected RCPs, 4.5 (stabilization scenario) and 8.5 (high emission scenario), representing four extreme cases (warm-wet, cold-wet, warm-dry, and cold-dry conditions), was applied. Future climate data was bias corrected using a quantile mapping method. The bias-corrected GCM data were forced into the SWAT model one at a time to simulate the future flows of BRB for three 30-year time windows: Immediate Future (2021–2050), Mid Future (2046–2075), and Far Future (2070–2099). The projected flows were compared with the corresponding monthly, seasonal, annual, and fractional differences of extreme flows of the simulated baseline period (1983–2012). The results showed that future long-term average annual flows are expected to increase in all climatic conditions for both RCPs compared to the baseline. The range of predicted changes in future monthly, seasonal, and annual flows shows high uncertainty. The comparative frequency analysis of the annual one-day-maximum and -minimum flows shows increased high flows and decreased low flows in the future. These results imply the necessity for design modifications in hydraulic structures as well as the preference of storage over run-of-river water resources development projects in the study basin from the perspective of climate resilience.


Sign in / Sign up

Export Citation Format

Share Document