scholarly journals Lower functional redundancy in “narrow” than “broad” functions in global soil metagenomics

2022 ◽  
Author(s):  
Huaihai Chen ◽  
Kayan Ma ◽  
Yu Huang ◽  
Jiajiang Lin ◽  
Christopher Schadt ◽  
...  

Abstract. Understanding the relationship between soil microbial taxonomic compositions and functional profiles is essential for predicting ecosystem functions under various environmental disturbances. However, even though microbial communities are sensitive to disturbance, ecosystem functions remain relatively stable, as soil microbes are likely to be functionally redundant. Microbial functional redundancy may be more associated with “broad” functions carried out by a wide range of microbes, than with “narrow” functions specialized by specific microorganisms. Thus, a comprehensive study to evaluate how microbial taxonomic compositions correlate with “broad” and “narrow” functional profiles is necessary. Here, we evaluated soil metagenomes worldwide to assess whether functional and taxonomic diversities differ significantly between the five “broad” and the five “narrow” functions that we chose. Our results revealed that compared with the five “broad” functions, soil microbes capable of performing the five “narrow” functions were more taxonomically diverse, and thus their functional diversity was more dependent on taxonomic diversity, implying lower levels of functional redundancy in “narrow” functions. Co-occurrence networks indicated that microorganisms conducting “broad” functions were positively related, but microbes specializing “narrow” functions were interacting mostly negatively. Our study provides strong evidence to support our hypothesis that functional redundancy is significantly different between “broad” and “narrow” functions in soil microbes, as the association of functional diversity with taxonomy were greater in the five “narrow” rather than the five “broad” functions.

Author(s):  
Oswald J. Schmitz

This chapter reflects on the relationship between biodiversity and ecosystem functions. Drawing connections between ecosystem functions and ecosystem services can make the concept of sustainability less nebulous. It offers tangible ways to translate science into practice by revealing the intricacies of nature and the many threads that link humans to nature through such intricacies. Establishing such connections illustrates why it is important to ensure that ecosystem functions endure. The chapter shows how the New Ecology is helping us appreciate how and why the complex ways that species that have evolved and forged interdependencies with each other matter to sustainability. It argues that maintaining diversity within ecosystems ensures that a wide range of options is available for adapting to environmental change.


Plants ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 479 ◽  
Author(s):  
Hanif ◽  
Guo ◽  
Moniruzzaman ◽  
He ◽  
Yu ◽  
...  

Plant attributes have direct and indirect effects on soil microbes via plant inputs and plant-mediated soil changes. However, whether plant taxonomic and functional diversities can explain the soil microbial diversity of restored forest ecosystems remains elusive. Here, we tested the linkage between plant attributes and soil microbial communities in four restored forests (Acacia species, Eucalyptus species, mixed coniferous species, mixed native species). The trait-based approaches were applied for plant properties and high-throughput Illumina sequencing was applied for fungal and bacterial diversity. The total number of soil microbial operational taxonomic units (OTUs) varied among the four forests. The highest richness of fungal OTUs was found in the Acacia forest. However, bacterial OTUs were highest in the Eucalyptus forest. Species richness was positively and significantly related to fungal and bacterial richness. Plant taxonomic diversity (species richness and species diversity) explained more of the soil microbial diversity than the functional diversity and soil properties. Prediction of fungal richness was better than that of bacterial richness. In addition, root traits explained more variation than the leaf traits. Overall, plant taxonomic diversity played a more important role than plant functional diversity and soil properties in shaping the soil microbial diversity of the four forests.


Forests ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 1083
Author(s):  
Xiu Lan ◽  
Hu Du ◽  
Wanxia Peng ◽  
Yongxian Liu ◽  
Zhilian Fang ◽  
...  

We selected five different ages of eucalyptus plantation sites to understand the culturable microbial functional diversity and the ecological functions of the soil from the eucalyptus plantations in Guangxi. We investigated the carbon source metabolic activity and diversity features of surface soil microbes using the Biolog EcoPlate method (Biolog Inc., Hayward, CA, USA), along with the microbial functional diversity and physicochemical properties of the soil. The results suggest that the carbon source utilization capacity of the soil microbes at various forest ages manifested as 3-year-old > 5-year-old > 2-year-old > 1-year-old > 8-year-old. The abundance, Shannon–Weiner, Pielou, Simpson, and McIntosh diversity indices of the soil microbes initially increased and then decreased with further increase in forest age, with the highest levels in 3- and 5-year-old forests. As per the heatmap analysis, the 3-year-old forest could metabolize the most carbon source species, while the 1- and 8-year-old forests could metabolize the least. Carbohydrates were the most frequently metabolized carbon source. The principal component analysis (PCA) shows that PC1 and PC2 extracted from the 31 factors have 52.42% and 13.39% of the variable variance, respectively. Carbohydrates contributed most to PCA, followed by amino acids and carboxylic acids, and phenolic acids and amines, the least. Canonical correspondence analysis shows that total carbon, alkali-hydrolyzable nitrogen, total nitrogen, total potassium, and pH negatively correlate with soil microbial functional diversity, whereas total and available phosphorus positively correlate with it. To sum up, the soil microbial community structure of eucalyptus plantations at various ages reflects the soil environmental conditions and nutrient availability, which is of great significance in the efficient management and high-quality operation of their plantations in Guangxi.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Minghui Liu ◽  
Xin Sui ◽  
Yanbo Hu ◽  
Fujuan Feng

Abstract Background The broad-leaved Korean pine mixed forest is an important and typical component of a global temperate forest. Soil microbes are the main driver of biogeochemical cycling in this forest ecosystem and have complex interactions with carbon (C) and nitrogen (N) components in the soil. Results We investigated the vertical soil microbial community structure in a primary Korean pine-broadleaved mixed forest in Changbai Mountain (from 699 to 1177 m) and analyzed the relationship between the microbial community and both C and N components in the soil. The results showed that the total phospholipid fatty acid (PLFA) of soil microbes and Gram-negative bacteria (G-), Gram-positive bacteria (G+), fungi (F), arbuscular mycorrhizal fungi (AMF), and Actinomycetes varied significantly (p < 0.05) at different sites (elevations). The ratio of fungal PLFAs to bacterial PLFAs (F/B) was higher at site H1, and H2. The relationship between microbial community composition and geographic distance did not show a distance-decay pattern. The coefficients of variation for bacteria were maximum among different sites (elevations). Total soil organic carbon (TOC), total nitrogen (TN), soil water content (W), and the ratio of breast-height basal area of coniferous trees to that of broad-leaved tree species (RBA) were the main contributors to the variation observed in each subgroup of microbial PLFAs. The structure equation model showed that TOC had a significant direct effect on bacterial biomass and an indirect effect upon bacterial and fungal biomass via soil readily oxidized organic carbon (ROC). No significant relationship was observed between soil N fraction and the biomass of fungi and bacteria. Conclusion The total PLFAs (tPLFA) and PLFAs of soil microbes, including G-, G+, F, AMF, and Actinomycetes, were significantly affected by elevation. Bacteria were more sensitive to changes in elevation than other microbes. Environmental heterogeneity was the main factor affecting the geographical distribution pattern of microbial community structure. TOC, TN, W and RBA were the main driving factors for the change in soil microbial biomass. C fraction was the main factor affecting the biomass of fungi and bacteria and ROC was one of the main sources of the microbial-derived C pool.


2020 ◽  
Author(s):  
Benedicto Vargas-Larreta ◽  
Jorge Omar Lopez Martinez ◽  
Edgar J. González ◽  
Jose Javier Corral-Rivas ◽  
Francisco Javier Hernández

Abstract Background: Studies on the relationship between biodiversity and ecosystem productivity have suggested that species richness and functional diversity are the main drivers of ecosystem processes. Several patterns on this relationship have been found, including positive, unimodal, negative, and neutral trends, keeping the issue controversial. In this study, taxonomic diversity and functional diversity as drivers of above-ground biomass (AGB) were comparated, and the mechanisms that influence biomass production were investigated by testing the complementarity and the mass-ratio hypotheses.Methods: Using data from 414 permanent sample plots, covering 23% of temperate forest in the Sierra Madre Oriental (México). We estimated the above-gound biomass (AGB), taxonomic and functional diversity indices, as well as community weighted mean values (CWM) for three functional trais (maximum height, leaf size and wood density) for trees ≥7.5 cm d.b.h., in managed and unmanaged stands. To compare taxonomic diversity differences between managed and unmanaged stands we carried out a rarefaction analysis. Furthermore, we evaluated the relationship between AGB and taxonomic and functional diversity metrics, as well as CWM traits throught spatial autoregressive models.Results: We found a hump-shaped relationship between AGB and species richness in managed and unmanaged forests. CMW of maximum height was the most important predictor of AGB in both stands, which suggested that the mechanism underlaying the AGB-diversity relationship is the dominance of some highly productive species, supporting the mass-ratio hypothesis. Above-ground biomass was significantly correlated with three of the five functional diversity metrics, CWM maximum height and species richness. Our results show the importance of take into account spatial autocorrelation in the construction of predictive models to avoid spurious patterns in the AGB-diversity relationship.Conclusion: Species richness, maximum height, functional richness, functional dispersion and RaoQ indices relate with above-ground biomass production in temperate mixed-species and uneven-aged forests of northern Mexico. These forests show a hump-shaped AGB-species richness relationship. Functional diversity explains better AGB production than classical taxonomic diversity. Community weighted mean traits provide key information to explain stand biomass in these forests, where maximum tree height seems to be a more suitable trait for understanding the biomass accumulation process in these ecosystems. Although the impact of forest management on biodiversity is still debated, it has not changed the AGB-diversity relationships in the forests of the Sierra Madre Occidental, Mexico.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Benedicto Vargas-Larreta ◽  
Jorge Omar López-Martínez ◽  
Edgar J. González ◽  
José Javier Corral-Rivas ◽  
Francisco Javier Hernández

Abstract Background Studies on the relationship between biodiversity and ecosystem productivity have suggested that species richness and functional diversity are the main drivers of ecosystem processes. Several patterns on this relationship have been found, including positive, unimodal, negative, and neutral trends, keeping the issue controversial. In this study, taxonomic diversity and functional diversity as drivers of above-ground biomass (AGB) were compared, and the mechanisms that influence biomass production were investigated by testing the complementarity and the mass-ratio hypotheses. Methods Using data from 414 permanent sample plots, covering 23% of temperate forest in the Sierra Madre Oriental (México), we estimated the above-gound biomass (AGB), taxonomic and functional diversity indices, as well as community weighted mean values (CWM) for three functional traits (maximum height, leaf size and wood density) for trees ≥7.5 cm DBH, in managed and unmanaged stands. To compare taxonomic diversity differences between managed and unmanaged stands we carried out a rarefaction analysis. Furthermore, we evaluated the relationship between AGB and taxonomic and functional diversity metrics, as well as CWM traits throught spatial autoregressive models. Results We found a hump-shaped relationship between AGB and species richness in managed and unmanaged forests. CMW of maximum height was the most important predictor of AGB in both stands, which suggested that the mechanism underlaying the AGB-diversity relationship is the dominance of some highly productive species, supporting the mass-ratio hypothesis. Above-ground biomass was significantly correlated with three of the five functional diversity metrics, CWM maximum height and species richness. Our results show the importance of taking into account spatial autocorrelation in the construction of predictive models to avoid spurious patterns in the AGB-diversity relationship. Conclusion Species richness, maximum height, functional richness, functional dispersion and RaoQ indices relate with above-ground biomass production in temperate mixed-species and uneven-aged forests of northern Mexico. These forests show a hump-shaped AGB-species richness relationship. Functional diversity explains better AGB production than classical taxonomic diversity. Community weighted mean traits provide key information to explain stand biomass in these forests, where maximum tree height seems to be a more suitable trait for understanding the biomass accumulation process in these ecosystems. Although the impact of forest management on biodiversity is still debated, it has not changed the AGB-diversity relationships in the forests of the Sierra Madre Occidental, Mexico.


Author(s):  
Yongyong Zhang ◽  
Monika Resch ◽  
Martin Schuetz ◽  
Ziyan Liao ◽  
Beat Frey ◽  
...  

It is generally assumed that there is a relationship between microbial diversity and multiple ecosystem functions. Although it is indisputable that microbial diversity is controlled by stochastic and deterministic ecological assembly processes, the relationship between these processes and soil multifunctionality (SMF) remains less clear. In this study, we examined how different grassland restoration treatments, namely harvest only, topsoil removal and topsoil removal plus propagule addition, affected i) soil bacterial and fungal community stochasticity, ii) SMF, and iii) the relationship between community stochasticity and SMF. Results showed that soil microbial community stochasticity decreased in all the three restoration treatments, while SMF increased. Soil multifunctionality was found to be significantly and negatively correlated with soil microbial community stochasticity. Plant diversity and plant C/N indirectly influenced SMF by regulating the microbial community stochasticity. Our findings provide empirical evidence that when deterministic community assembly processes dominate in soils, then higher microbial functioning is expected.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wei Li ◽  
Shuqiang He ◽  
Xiping Cheng ◽  
Mingqiang Zhang

AbstractAlpine grasslands harbor diverse groups of flora and fauna, provide important ecosystem functions, and yield essential ecosystem goods and services, especially for the development of nature-based tourism. However, they are experiencing increasing anthropogenic perturbations such as tourist trampling. Although negative effects of tourist trampling on alpine vegetation have been frequently reported, previous studies have focused mainly on changes in taxonomic diversity after trampling, and rarely provide a mechanistic elucidation of trampling effects from a trait-based perspective. The present study evaluates the impacts of simulated trampling on taxonomic and functional diversity of a typical alpine grassland community in Shangri-La, China using a standardized protocol. The results showed that although taxonomic diversity was not statistically significantly affected by trampling, some functional attributes responded rapidly to trampling disturbance. Specifically, functional divergence decreased with an increase in trampling intensity, and characteristics of community-weighted mean trait values changed towards shorter species with reduced leaf area and lower leaf dry matter content. Such strong shifts in functional attributes may further affect ecosystem goods and services provided by alpine grasslands. Our inclusion of functional diversity in the analysis thus adds an important caution to previous studies predominantly focusing on taxonomic diversity, and it is urgent to keep alpine grasslands well managed and ecologically coherent so that their valuable functions and services can be safeguarded.


2020 ◽  
Author(s):  
Benedicto Vargas-Larreta ◽  
Jorge Omar Lopez Martinez ◽  
Edgar J. González ◽  
Jose Javier Corral-Rivas ◽  
Francisco Javier Hernández

Abstract Background: Studies on the relationship between biodiversity and ecosystem productivity have suggested that species richness and functional diversity are the main drivers of ecosystem processes. Several patterns on this relationship have been found, including positive, unimodal, negative, and neutral trends, keeping the issue controversial. In this study, taxonomic diversity and functional diversity as drivers of above-ground biomass (AGB) were comparated, and the mechanisms that influence biomass production were investigated by testing the complementarity and the mass-ratio hypotheses. Methods: Using data from 414 permanent sample plots, covering 23% of temperate forest in the Sierra Madre Oriental (México). We estimated the above-gound biomass (AGB), taxonomic and functional diversity indices, as well as community weighted mean values (CWM) for three functional trais (maximum height, leaf size and wood density) for trees ≥7.5 cm d.b.h., in managed and unmanaged stands. To compare taxonomic diversity differences between managed and unmanaged stands we carried out a rarefaction analysis. Furthermore, we evaluated the relationship between AGB and taxonomic and functional diversity metrics, as well as CWM traits throught spatial autoregressive models. Results: We found a hump-shaped relationship between AGB and species richness in managed and unmanaged forests. CMW of maximum height was the most important predictor of AGB in both stands, which suggested that the mechanism underlaying the AGB-diversity relationship is the dominance of some highly productive species, supporting the mass-ratio hypothesis. Above-ground biomass was significantly correlated with three of the five functional diversity metrics, CWM maximum height and species richness. Our results show the importance of take into account spatial autocorrelation in the construction of predictive models to avoid spurious patterns in the AGB-diversity relationship. Conclusion: Species richness, maximum height, functional richness, functional dispersion and RaoQ indices relate with above-ground biomass production in temperate mixed-species and uneven-aged forests of northern Mexico. These forests show a hump-shaped AGB-species richness relationship. Functional diversity explains better AGB production than classical taxonomic diversity. Community weighted mean traits provide key information to explain stand biomass in these forests, where maximum tree height seems to be a more suitable trait for understanding the biomass accumulation process in these ecosystems. Although the impact of forest management on biodiversity is still debated, it has not changed the AGB-diversity relationships in the forests of the Sierra Madre Occidental, Mexico.


Sign in / Sign up

Export Citation Format

Share Document