scholarly journals Changes of the Arctic marginal ice zone during the satellite era

2020 ◽  
Vol 14 (6) ◽  
pp. 1971-1984 ◽  
Author(s):  
Rebecca J. Rolph ◽  
Daniel L. Feltham ◽  
David Schröder

Abstract. Many studies have shown a decrease in Arctic sea ice extent. It does not logically follow, however, that the extent of the marginal ice zone (MIZ), here defined as the area of the ocean with ice concentrations from 15 % to 80 %, is also changing. Changes in the MIZ extent has implications for the level of atmospheric and ocean heat and gas exchange in the area of partially ice-covered ocean and for the extent of habitat for organisms that rely on the MIZ, from primary producers like sea ice algae to seals and birds. Here, we present, for the first time, an analysis of satellite observations of pan-Arctic averaged MIZ extent. We find no trend in the MIZ extent over the last 40 years from observations. Our results indicate that the constancy of the MIZ extent is the result of an observed increase in width of the MIZ being compensated for by a decrease in the perimeter of the MIZ as it moves further north. We present simulations from a coupled sea ice–ocean mixed layer model using a prognostic floe size distribution, which we find is consistent with, but poorly constrained by, existing satellite observations of pan-Arctic MIZ extent. We provide seasonal upper and lower bounds on MIZ extent based on the four satellite-derived sea ice concentration datasets used. We find a large and significant increase (>50 %) in the August and September MIZ fraction (MIZ extent divided by sea ice extent) for the Bootstrap and OSI-450 observational datasets, which can be attributed to the reduction in total sea ice extent. Given the results of this study, we suggest that references to “rapid changes” in the MIZ should remain cautious and provide a specific and clear definition of both the MIZ itself and also the property of the MIZ that is changing.

2019 ◽  
Author(s):  
Rebecca J. Rolph ◽  
Daniel L. Feltham ◽  
David Schroeder

Abstract. Many studies have shown a decrease in Arctic sea ice extent. It does not logically follow, however, that the extent of the marginal ice zone (MIZ), here defined as the area of the ocean with ice concentrations from 15 to 80 %, is also changing. Here, we present, for the first time, an analysis of satellite observations of pan-Arctic averaged MIZ extent. We find no trend in the MIZ extent during the last 40 years from observations. We present simulations from a coupled sea ice-ocean mixed layer model using a prognostic floe size distribution which we find is consistent with, but poorly constrained by, existing satellite observations of pan-Arctic MIZ extent. We provide seasonal upper and lower bounds on MIZ extent based on the 4 satellite-derived sea ice concentration datasets used. An extrapolation of the observations shows the MIZ extent as remaining relatively constant in the coming decades, at least until the Arctic is completely covered by seasonal ice. We find a small increase in the summer MIZ fraction (MIZ extent divided by sea ice extent), which can be attributed to the reduction in total sea ice extent. The MIZ location is trending northwards, consistent with other studies. Given the results of this study, we suggest that future studies need to remain cautious and provide a specific and clear definition when stating the MIZ is ‘rapidly changing’.


2021 ◽  
Vol 15 (7) ◽  
pp. 3207-3227
Author(s):  
Timothy Williams ◽  
Anton Korosov ◽  
Pierre Rampal ◽  
Einar Ólason

Abstract. The neXtSIM-F (neXtSIM forecast) forecasting system consists of a stand-alone sea ice model, neXtSIM (neXt-generation Sea Ice Model), forced by the TOPAZ ocean forecast and the ECMWF atmospheric forecast, combined with daily data assimilation of sea ice concentration. It uses the novel brittle Bingham–Maxwell (BBM) sea ice rheology, making it the first forecast based on a continuum model not to use the viscous–plastic (VP) rheology. It was tested in the Arctic for the time period November 2018–June 2020 and was found to perform well, although there are some shortcomings. Despite drift not being assimilated in our system, the sea ice drift is good throughout the year, being relatively unbiased, even for longer lead times like 5 d. The RMSE in speed and the total RMSE are also good for the first 3 or so days, although they both increase steadily with lead time. The thickness distribution is relatively good, although there are some regions that experience excessive thickening with negative implications for the summertime sea ice extent, particularly in the Greenland Sea. The neXtSIM-F forecasting system assimilates OSI SAF sea ice concentration products (both SSMIS and AMSR2) by modifying the initial conditions daily and adding a compensating heat flux to prevent removed ice growing back too quickly. The assimilation greatly improves the sea ice extent for the forecast duration.


2017 ◽  
Vol 34 (7) ◽  
pp. 1565-1584 ◽  
Author(s):  
Courtenay Strong ◽  
Dallas Foster ◽  
Elena Cherkaev ◽  
Ian Eisenman ◽  
Kenneth M. Golden

AbstractSea ice features a dense inner pack ice zone surrounded by a marginal ice zone (MIZ) in which the sea ice properties are modified by interaction with the ice-free open ocean. The width of the MIZ is a fundamental length scale for polar physical and biological dynamics. Several different criteria for establishing MIZ boundaries have emerged in the literature—wave penetration, floe size, sea ice concentration, etc.—and a variety of definitions for the width between the MIZ boundaries have been published. Here, three desirable mathematical properties for defining MIZ width are proposed: invariance with respect to translation and rotation on the sphere; uniqueness at every point in the MIZ; and generality, including nonconvex shapes. The previously published streamline definition is shown to satisfy all three properties, where width is defined as the arc length of a streamline through the solution to Laplaces’s equation within the MIZ boundaries, while other published definitions each satisfy only one of the desired properties. When defining MIZ spatial average width from streamline results, the rationale for averaging with respect to distance along both MIZ boundaries was left implicit in prior studies. Here it is made rigorous by developing and applying the mathematics of an analytically tractable idealization of MIZ geometry—the eccentric annulus. Finally, satellite-retrieved Arctic sea ice concentrations are used to investigate how well streamline-based MIZ spatial average width is approximated by alternative definitions that lack desirable mathematical properties or local width values but offer computational efficiency.


2016 ◽  
Vol 29 (4) ◽  
pp. 1529-1543 ◽  
Author(s):  
Lei Wang ◽  
Xiaojun Yuan ◽  
Mingfang Ting ◽  
Cuihua Li

Abstract Recent Arctic sea ice changes have important societal and economic impacts and may lead to adverse effects on the Arctic ecosystem, weather, and climate. Understanding the predictability of Arctic sea ice melting is thus an important task. A vector autoregressive (VAR) model is evaluated for predicting the summertime (May–September) daily Arctic sea ice concentration on the intraseasonal time scale, using only the daily sea ice data and without direct information of the atmosphere and ocean. The intraseasonal forecast skill of Arctic sea ice is assessed using the 1979–2012 satellite data. The cross-validated forecast skill of the VAR model is found to be superior to both the anomaly persistence and damped anomaly persistence at lead times of ~20–60 days, especially over northern Eurasian marginal seas and the Beaufort Sea. The daily forecast of ice concentration also leads to predictions of ice-free dates and September mean sea ice extent. In addition to capturing the general seasonal melt of sea ice, the model is also able to capture the interannual variability of the melting, from partial melt of the marginal sea ice in the beginning of the period to almost a complete melt in the later years. While the detailed mechanism leading to the high predictability of intraseasonal sea ice concentration needs to be further examined, the study reveals for the first time that Arctic sea ice can be predicted statistically with reasonable skill at the intraseasonal time scales given the small signal-to-noise ratio of daily data.


2021 ◽  
Vol 13 (6) ◽  
pp. 1139
Author(s):  
David Llaveria ◽  
Juan Francesc Munoz-Martin ◽  
Christoph Herbert ◽  
Miriam Pablos ◽  
Hyuk Park ◽  
...  

CubeSat-based Earth Observation missions have emerged in recent times, achieving scientifically valuable data at a moderate cost. FSSCat is a two 6U CubeSats mission, winner of the ESA S3 challenge and overall winner of the 2017 Copernicus Masters Competition, that was launched in September 2020. The first satellite, 3Cat-5/A, carries the FMPL-2 instrument, an L-band microwave radiometer and a GNSS-Reflectometer. This work presents a neural network approach for retrieving sea ice concentration and sea ice extent maps on the Arctic and the Antarctic oceans using FMPL-2 data. The results from the first months of operations are presented and analyzed, and the quality of the retrieved maps is assessed by comparing them with other existing sea ice concentration maps. As compared to OSI SAF products, the overall accuracy for the sea ice extent maps is greater than 97% using MWR data, and up to 99% when using combined GNSS-R and MWR data. In the case of Sea ice concentration, the absolute errors are lower than 5%, with MWR and lower than 3% combining it with the GNSS-R. The total extent area computed using this methodology is close, with 2.5% difference, to those computed by other well consolidated algorithms, such as OSI SAF or NSIDC. The approach presented for estimating sea ice extent and concentration maps is a cost-effective alternative, and using a constellation of CubeSats, it can be further improved.


2020 ◽  
Vol 12 (7) ◽  
pp. 1060 ◽  
Author(s):  
Lise Kilic ◽  
Catherine Prigent ◽  
Filipe Aires ◽  
Georg Heygster ◽  
Victor Pellet ◽  
...  

Over the last 25 years, the Arctic sea ice has seen its extent decline dramatically. Passive microwave observations, with their ability to penetrate clouds and their independency to sunlight, have been used to provide sea ice concentration (SIC) measurements since the 1970s. The Copernicus Imaging Microwave Radiometer (CIMR) is a high priority candidate mission within the European Copernicus Expansion program, with a special focus on the observation of the polar regions. It will observe at 6.9 and 10.65 GHz with 15 km spatial resolution, and at 18.7 and 36.5 GHz with 5 km spatial resolution. SIC algorithms are based on empirical methods, using the difference in radiometric signatures between the ocean and sea ice. Up to now, the existing algorithms have been limited in the number of channels they use. In this study, we proposed a new SIC algorithm called Ice Concentration REtrieval from the Analysis of Microwaves (IceCREAM). It can accommodate a large range of channels, and it is based on the optimal estimation. Linear relationships between the satellite measurements and the SIC are derived from the Round Robin Data Package of the sea ice Climate Change Initiative. The 6 and 10 GHz channels are very sensitive to the sea ice presence, whereas the 18 and 36 GHz channels have a better spatial resolution. A data fusion method is proposed to combine these two estimations. Therefore, IceCREAM will provide SIC estimates with the good accuracy of the 6+10GHz combination, and the high spatial resolution of the 18+36GHz combination.


2019 ◽  
Vol 32 (5) ◽  
pp. 1361-1380 ◽  
Author(s):  
J. Ono ◽  
H. Tatebe ◽  
Y. Komuro

Abstract The mechanisms for and predictability of a drastic reduction in the Arctic sea ice extent (SIE) are investigated using the Model for Interdisciplinary Research on Climate (MIROC) version 5.2. Here, a control (CTRL) with forcing fixed at year 2000 levels and perfect-model ensemble prediction (PRED) experiments are conducted. In CTRL, three (model years 51, 56, and 57) drastic SIE reductions occur during a 200-yr-long integration. In year 56, the sea ice moves offshore in association with a positive phase of the summer Arctic dipole anomaly (ADA) index and melts due to heat input through the increased open water area, and the SIE drastically decreases. This provides the preconditioning for the lowest SIE in year 57 when the Arctic Ocean interior is in a warm state and the spring sea ice volume has a large negative anomaly due to drastic ice reduction in the previous year. Although the ADA is one of the key mechanisms behind sea ice reduction, it does not always cause a drastic reduction. Our analysis suggests that wind direction favoring offshore ice motion is a more important factor for drastic ice reduction events. In years experiencing drastic ice reduction events, the September SIE can be skillfully predicted in PRED started from July, but not from April. This is because the forecast errors for the July sea level pressure and those for the sea ice concentration and sea ice thickness along the ice edge are large in PRED started from April.


1984 ◽  
Vol 5 ◽  
pp. 61-68 ◽  
Author(s):  
T. Holt ◽  
P. M. Kelly ◽  
B. S. G. Cherry

Soviet plans to divert water from rivers flowing into the Arctic Ocean have led to research into the impact of a reduction in discharge on Arctic sea ice. We consider the mechanisms by which discharge reductions might affect sea-ice cover and then test various hypotheses related to these mechanisms. We find several large areas over which sea-ice concentration correlates significantly with variations in river discharge, supporting two particular hypotheses. The first hypothesis concerns the area where the initial impacts are likely to which is the Kara Sea. Reduced riverflow is associated occur, with decreased sea-ice concentration in October, at the time of ice formation. This is believed to be the result of decreased freshening of the surface layer. The second hypothesis concerns possible effects on the large-scale current system of the Arctic Ocean and, in particular, on the inflow of Atlantic and Pacific water. These effects occur as a result of changes in the strength of northward-flowing gradient currents associated with variations in river discharge. Although it is still not certain that substantial transfers of riverflow will take place, it is concluded that the possibility of significant cryospheric effects and, hence, large-scale climate impact should not be neglected.


2021 ◽  
Author(s):  
Vladimir Semenov ◽  
Tatiana Matveeva

<p>Global warming in the recent decades has been accompanied by a rapid recline of the Arctic sea ice area most pronounced in summer (10% per decade). To understand the relative contribution of external forcing and natural variability to the modern and future sea ice area changes, it is necessary to evaluate a range of long-term variations of the Arctic sea ice area in the period before a significant increase in anthropogenic emissions of greenhouse gases into the atmosphere. Available observational data on the spatiotemporal dynamics of Arctic sea ice until 1950s are characterized by significant gaps and uncertainties. In the recent years, there have appeared several reconstructions of the early 20<sup>th</sup> century Arctic sea ice area that filled the gaps by analogue methods or utilized combined empirical data and climate model’s output. All of them resulted in a stronger that earlier believed negative sea ice area anomaly in the 1940s concurrent with the early 20<sup>th</sup> century warming (ETCW) peak. In this study, we reconstruct the monthly average gridded sea ice concentration (SIC) in the first half of the 20th century using the relationship between the spatiotemporal features of SIC variability, surface air temperature over the Northern Hemisphere extratropical continents, sea surface temperature in the North Atlantic and North Pacific, and sea level pressure. In agreement with a few previous results, our reconstructed data also show a significant negative anomaly of the Arctic sea ice area in the middle of the 20th century, however with some 15% to 30% stronger amplitude, about 1.5 million km<sup>2</sup> in September and 0.7 million km<sup>2</sup> in March. The reconstruction demonstrates a good agreement with regional Arctic sea ice area data when available and suggests that ETWC in the Arctic has been accompanied by a concurrent sea ice area decline of a magnitude that have been exceeded only in the beginning of the 21<sup>st</sup> century.</p>


2021 ◽  
Author(s):  
Andreas Stokholm ◽  
Leif Pedersen ◽  
René Forsberg ◽  
Sine Hvidegaard

<p>In recent years the Arctic has seen renewed political and economic interest, increased maritime traffic and desire for improved sea ice navigational tools. Despite a rise in digital technology, maps of sea ice concentration used for Arctic maritime operations are still today created by humans manually interpreting radar images. This process is slow with low map release frequency, uncertainties up to 20 % and discrepancies up to 60 %. Utilizing emerging AI Convolutional Neural Network (CNN) semantic image segmentation techniques to automate this process is drastically changing navigation in the Arctic seas, with better resolution, accuracy, release frequency and coverage. Automatic Arctic sea ice products may contribute to enabling the disruptive Northern Sea Route connecting North East Asia to Europe via the Arctic oceans.</p><p>The AI4Arctic/ASIP V2 data set, that combines 466 Sentinel-1 HH and HV SAR images from Greenland, Passive Microwave Radiometry from the AMSR2 instrument, and an equivalent sea ice concentration chart produced by ice analysts at the Danish Meteorological Institute, have been used to train a CNN U-Net Architecture model. The model shows robust capabilities in producing highly detailed sea ice concentration maps with open water, intermediate sea ice concentrations as well as full sea ice cover, which resemble those created by professional sea ice analysts. Often cited obstacles in automatic sea ice concentration models are wind-roughened sea ambiguities resembling sea ice. Final inference scenes show robustness towards such ambiguities.</p>


Sign in / Sign up

Export Citation Format

Share Document