scholarly journals Effect of snowfall on changes in relative seismic velocity measured by ambient noise correlation

2021 ◽  
Vol 15 (12) ◽  
pp. 5805-5817
Author(s):  
Antoine Guillemot ◽  
Alec van Herwijnen ◽  
Eric Larose ◽  
Stephanie Mayer ◽  
Laurent Baillet

Abstract. In mountainous, cold temperate and polar sites, the presence of snow cover can affect relative seismic velocity changes (dV/V) derived from ambient noise correlation, but this relation is relatively poorly documented and ambiguous. In this study, we analyzed raw seismic recordings from a snowy flat field site located above Davos (Switzerland), during one entire winter season (from December 2018 to June 2019). We identified three snowfall events with a substantial response of dV/V measurements (drops of several percent between 15 and 25 Hz), suggesting a detectable change in elastic properties of the medium due to the additional fresh snow. To better interpret the measurements, we used a physical model to compute frequency-dependent changes in the Rayleigh wave velocity computed before and after the events. Elastic parameters of the ground subsurface were obtained from a seismic refraction survey, whereas snow cover properties were obtained from the snow cover model SNOWPACK. The decrease in dV/V due to a snowfall was well reproduced, with the same order of magnitude as observed values, confirming the importance of the effect of fresh and dry snow on seismic measurements. We also observed a decrease in dV/V with snowmelt periods, but we were not able to reproduce those changes with our model. Overall, our results highlight the effect of the snow cover on seismic measurements, but more work is needed to accurately model this response, in particular for the presence of liquid water in the snowpack.

2021 ◽  
Author(s):  
Antoine Guillemot ◽  
Alec van Herwijnen ◽  
Eric Larose ◽  
Stephanie Mayer ◽  
Laurent Baillet

Abstract. In mountainous, cold temperate and polar sites, the presence of a snow cover can affect relative seismic velocity changes (dV/V) derived from ambient noise correlation, but this relation is relatively poorly documented and ambiguous. In this study, we analyzed raw seismic recordings from a snowy flat field site located above Davos (Switzerland), during one entire winter season (from December 2018 to June 2019). We identified three snowfall events with a substantial response of dV/V measurements (drops of several percent between 15 and 25 Hz), suggesting a detectable change in elastic properties of the medium due to the additional fresh snow. To better interpret the measurements, we used a physical model to compute frequency dependent changes in the Rayleigh wave velocity computed before and after the events. Elastic parameters of the ground subsurface were obtained from a seismic refraction survey, whereas snow cover properties were obtained from the snow cover model SNOWPACK. The decrease in dV/V due to a snowfall were well reproduced, with the same order of magnitude as observed values, confirming the importance of the effect of fresh and dry snow on seismic measurements. We also observed a decrease in dV/V with snowmelt periods, but we were not able to reproduce those changes with our model. Overall, our results highlight the effect of the snowcover on seismic measurements, but more work is needed to accurately model this response, in particular for the presence of liquid water in the snowpack.


2021 ◽  
Author(s):  
Antoine Guillemot ◽  
Alec Van Herwijnen ◽  
Laurent Baillet ◽  
Eric Larose

<p>Seismic noise correlation is a broadly used method to monitor the subsurface, in order to detect physical processes into the surveyed medium such changes in rigidity, fluid injection or cracking <sup>(1)</sup>. The influence of several environmental variables on measured seismic observables were studied, such as temperature, groundwater level fluctuations, and freeze-thawing cycles <sup>(2)</sup>. In mountainous, cold temperate and polar sites, the presence of a snowcover can also affect relative seismic velocity changes (dV/V), but this relation is relatively poorly documented and ambiguous <sup>(3)(4)</sup>. In this study, we analyzed raw seismic recordings from a snowy flat field site located above Davos (Switzerland), during one entire winter season (from December 2018 to June 2019). Our goal was to better understand the effect of snowfall and snowmelt events on dV/V measurements through both seismic and meteorological instrumentation.</p><p>We identified three snowfall events with a substantial response of dV/V measurements (drops of several percent between 15 and 25 Hz), suggesting a detectable change in elastic properties of the medium due to the additional fresh snow.</p><p>To better interpret the measurements, we used a physical model to compute frequency dependent changes in the Rayleigh wave velocity computed before and after the events. Elastic parameters of the ground subsurface were obtained from a seismic refraction survey, whereas snow cover properties were obtained from the snow cover model SNOWPACK. The decrease in dV/V due to a snowfall were well reproduced, with the same order of magnitude than observed values, confirming the importance of the effect of fresh and dry snow on seismic measurements.</p><p>We also observed a decrease in dV/V with snowmelt periods, but we were not able to reproduce those changes with our model. Overall, our results highlight the effect of the snowcover on seismic measurements, but more work is needed to accurately model this response, in particular for the presence of liquid water in the snowcover.</p><p> </p><p><strong>References</strong></p><ul><li>(1) Larose, E., Carrière, S., Voisin, C., Bottelin, P., Baillet, L., Guéguen, P., Walter, F., et al. (2015) Environmental seismology: What can we learn on earth surface processes with ambient noise? Journal of Applied Geophysics, <strong>116</strong>, 62–74. doi:10.1016/j.jappgeo.2015.02.001</li> <li>(2) Le Breton, M., Larose, É., Baillet, L., Bontemps, N. & Guillemot, A. (2020) Landslide Monitoring Using Seismic Ambient Noise Interferometry: Challenges and Applications. Earth-Science Reviews</li> <li>(3) Hotovec‐Ellis, A.J., Gomberg, J., Vidale, J.E. & Creager, K.C. (2014) A continuous record of intereruption velocity change at Mount St. Helens from coda wave interferometry. Journal of Geophysical Research: Solid Earth, <strong>119</strong>, 2199–2214. doi:10.1002/2013JB010742</li> <li>(4) Wang, Q.-Y., Brenguier, F., Campillo, M., Lecointre, A., Takeda, T. & Aoki, Y. (2017) Seasonal Crustal Seismic Velocity Changes Throughout Japan. Journal of Geophysical Research: Solid Earth, <strong>122</strong>, 7987–8002. doi:10.1002/2017JB014307</li> </ul>


2014 ◽  
Vol 41 (17) ◽  
pp. 6131-6136 ◽  
Author(s):  
Tomoya Takano ◽  
Takeshi Nishimura ◽  
Hisashi Nakahara ◽  
Yusaku Ohta ◽  
Sachiko Tanaka

2021 ◽  
Author(s):  
◽  
Megan Kortink

<p>Seismic velocity changes before and after large magnitude earthquakes carry information about damage present within the faults in the surrounding region. In this thesis, temporal velocity changes are measured before and after the 2016 Kaikōura earthquake using ambient noise interferometry between 2012 - 2018. This period contains the Mw 7.8 2016 Kaikoura earthquake as well as the 2013 Cook Strait earthquake sequence and a few deep large magnitude earthquakes in 2015 - 2016. Three primary objectives are identified: (1) investigate seismic velocity changes in the Kaikōura region and their connection to the 2016 Kaikōura earthquake to try and determine if there was a change before/after the earthquake, (2) determine how this change varied across the region, and (3) consider if ambient noise can lead to improved detection and understanding of geological hazard.   The primary approach used to measure velocity changes in the Kaikōura region involved cross correlating noise recorded by seismic stations across the region. Velocity changes are sought by averaging the best result from multiple onshore station pairs. A secondary approach was also used, in which specific station pairs were averaged to determine if there were more localised velocity changes over more specific regions. This was to determine if the velocity changes observed following the 2016 Kaikōura earthquake occurred over the entire ruptured region.   Following the 2016 Kaikōura earthquake a velocity decrease of 0.24±0.02% was observed on the average of the vertical-vertical components for eight stations. The remaining eight cross-component pairs showed a smaller seismic decrease with an average value of 0.22±0.05%. After the decrease following the Kaikōura earthquake, there is a steady velocity increase of 0.13±0.02% over a one-and-a-half-year period. This indicates that prior to the earthquake, seismic velocity was at a steady state until it was perturbed by the Kaikōura earthquake, and seismic velocities rapidly decreased over all stations. Across the region, stations with a longer interstation distance and further away from ruptured faults had a smaller decrease in velocity than station pairs with a smaller interstation distance that were closer to ruptured faults. We interpret the velocity decrease following the Kaikōura earthquake as a result of cracks opening during the earthquake. The velocity increase following the earthquake is indicative of the cracks slowly healing.   The Cook Strait earthquake sequence that occurred in 2013 did not cause any velocity changes at the stations used in this thesis. This has been interpreted to be because the changes were too small compared to the background noise or the stations were not recording during the time of the earthquake sequence. Two other decreases were also observed in the region following two deep earthquakes in April 2015 (Mw 6.2, depth = 52km) and February 2016 (Mw 5.7, depth = 48km). Both of these events resulted in a small seismic decrease of 0.1±0.02%. Although these earthquakes were close to seismic stations when they occurred, they were much deeper and had a smaller magnitude than the Kaikōura earthquake so did not cause a large velocity decrease. By understanding what causes velocity changes it is possible to have an improved understanding of the geological hazard in the region.</p>


2021 ◽  
Author(s):  
Eric Larose ◽  
Mathieu Le Breton ◽  
Noélie Bontemps ◽  
Antoine Guillemont ◽  
Laurent Baillet

&lt;p&gt;Monitoring landslides is essential to understand their dynamics and to reduce the risk of human losses by raising warnings before a failure. A decade ago, a decrease of apparent seismic velocity was detected several days before the failure of a clayey landslide, that was monitored with the ambient noise correlation method. It revealed its potential to detect precursor signals before a landslide failure, which could improve early warning systems. To date, nine landslides have been monitored with this method, and its ability to reveal precursors before failure seems confirmed on clayey landslides. However three challenges remain for operational early-warning applications: to detect velocity changes both rapidly and with confidence, to account for seasonal and daily environmental influences, and to check for potential instabilities in measurements. The ability to detect a precursory velocity change requires to adapt the processing workflow to each landslide: the key factors are the filtering frequency, the correlation time window, and the choice of temporal resolution. The velocity also fluctuates seasonally, by 1 to 6% on the reviewed landslide studies, due to environmental influences, with a linear trend between the amplitude of seasonal fluctuations and the filtering frequency over the 0.1&amp;#8211;20&amp;#8239;Hz range, encompassing both landslide and non-landslide studies. The environmental velocity fluctuations are caused mostly by groundwater levels and soil freezing/thawing, but could also be affected by snow height, air temperature and tide depending on the site. Daily fluctuations should also occur on landslides, and can be an issue when seeking to obtain a sub-daily resolution useful for early-warning systems. Finally, spurious fluctuations of apparent velocity&amp;#8212;unrelated to the material dynamics&amp;#8212;should be verified for. They can be caused by changes in noise sources (location or spectral content), in site response (change of scatterers, attenuation, or resonance frequency due to geometrical factors), or in inter-sensor distance. As a perspective, the observation of seismic velocity changes could contribute in assessing a landslide stability across time, both during the different creeping stages occurring before a potential failure, and during its reconsolidation after a failure.&lt;/p&gt;&lt;p&gt;----&lt;/p&gt;&lt;p&gt;Main references :&lt;/p&gt;&lt;ul&gt;&lt;li&gt;Le Breton M., Bontemps N., Guillemont A., Baillet L., Larose E., 2021. Landslide Monitoring Using Seismic Ambient Noise Correlation: Challenges and Applications, Earth Science Reviews, In press&lt;/li&gt; &lt;li&gt;Larose, E., Carri&amp;#232;re, S., Voisin, C., Bottelin, P., Baillet, L., Gu&amp;#233;guen, P., Walter, F., Jongmans, D., Guillier, B., Garambois, S., Gimbert, F., Massey, C., 2015. Environmental seismology: What can we learn on earth surface processes with ambient noise? Journal of Applied Geophysics 116, 62&amp;#8211;74. https://doi.org/10.1016/j.jappgeo.2015.02.001&lt;/li&gt; &lt;li&gt;Mainsant, G., Larose, E., Br&amp;#246;nnimann, C., Jongmans, D., Michoud, C., Jaboyedoff, M., 2012. Ambient seismic noise monitoring of a clay landslide: Toward failure prediction. J. Geophys. Res. 117, F01030. https://doi.org/10.1029/2011JF002159&lt;/li&gt; &lt;/ul&gt;


2021 ◽  
Author(s):  
◽  
Megan Kortink

<p>Seismic velocity changes before and after large magnitude earthquakes carry information about damage present within the faults in the surrounding region. In this thesis, temporal velocity changes are measured before and after the 2016 Kaikōura earthquake using ambient noise interferometry between 2012 - 2018. This period contains the Mw 7.8 2016 Kaikoura earthquake as well as the 2013 Cook Strait earthquake sequence and a few deep large magnitude earthquakes in 2015 - 2016. Three primary objectives are identified: (1) investigate seismic velocity changes in the Kaikōura region and their connection to the 2016 Kaikōura earthquake to try and determine if there was a change before/after the earthquake, (2) determine how this change varied across the region, and (3) consider if ambient noise can lead to improved detection and understanding of geological hazard.   The primary approach used to measure velocity changes in the Kaikōura region involved cross correlating noise recorded by seismic stations across the region. Velocity changes are sought by averaging the best result from multiple onshore station pairs. A secondary approach was also used, in which specific station pairs were averaged to determine if there were more localised velocity changes over more specific regions. This was to determine if the velocity changes observed following the 2016 Kaikōura earthquake occurred over the entire ruptured region.   Following the 2016 Kaikōura earthquake a velocity decrease of 0.24±0.02% was observed on the average of the vertical-vertical components for eight stations. The remaining eight cross-component pairs showed a smaller seismic decrease with an average value of 0.22±0.05%. After the decrease following the Kaikōura earthquake, there is a steady velocity increase of 0.13±0.02% over a one-and-a-half-year period. This indicates that prior to the earthquake, seismic velocity was at a steady state until it was perturbed by the Kaikōura earthquake, and seismic velocities rapidly decreased over all stations. Across the region, stations with a longer interstation distance and further away from ruptured faults had a smaller decrease in velocity than station pairs with a smaller interstation distance that were closer to ruptured faults. We interpret the velocity decrease following the Kaikōura earthquake as a result of cracks opening during the earthquake. The velocity increase following the earthquake is indicative of the cracks slowly healing.   The Cook Strait earthquake sequence that occurred in 2013 did not cause any velocity changes at the stations used in this thesis. This has been interpreted to be because the changes were too small compared to the background noise or the stations were not recording during the time of the earthquake sequence. Two other decreases were also observed in the region following two deep earthquakes in April 2015 (Mw 6.2, depth = 52km) and February 2016 (Mw 5.7, depth = 48km). Both of these events resulted in a small seismic decrease of 0.1±0.02%. Although these earthquakes were close to seismic stations when they occurred, they were much deeper and had a smaller magnitude than the Kaikōura earthquake so did not cause a large velocity decrease. By understanding what causes velocity changes it is possible to have an improved understanding of the geological hazard in the region.</p>


2021 ◽  
Author(s):  
Rezkia Dewi Andajani ◽  
Takeshi Tsuji ◽  
Roel Snieder ◽  
Tatsunori Ikeda

&lt;p&gt;Crustal pore pressure, which could trigger seismicity and volcanic activity, varies with fluid invasion. Various studies have discussed the potential of using seismic velocity changes from ambient noise to evaluate pore pressure conditions, especially due to rainfall perturbations. Although the influence of rainfall on seismic velocity changes has been reported, consideration of the spatial influence on rainfall towards seismic velocity and its mechanism have not been well understood. We investigated the mechanism of rainfall-induced pore pressure diffusion in southwestern Japan, using seismic velocity change (Vs) inferred from ambient noise. We modeled pore pressure changes from rainfall data based on a diffusion mechanism at the locations where infiltration is indicated. By calculating the correlation between Vs changes and the modeled pore pressure with various hydraulic diffusion parameters, the optimum hydraulic diffusion parameter was obtained. We estimated the diffusion parameters with the highest negative correlation between pore pressure and Vs change because a negative correlation indicates pore pressure increase due to diffusion induced by groundwater load. Furthermore, the spatial variation of the hydraulic diffusivity infers the heterogeneity of the rocks in different locations. This finding suggests that the response of pore pressure induced by rainfall percolation depends on location.&amp;#160; We show that seismic velocity monitoring can be used to evaluate the status of pore pressure at different locations, which is useful for fluid injection, CO&lt;sub&gt;2&lt;/sub&gt; wellbore storage, and geothermal development.&lt;/p&gt;


2021 ◽  
Author(s):  
Laura Ermert ◽  
Marine Denolle ◽  
Enrique Cabral Cano ◽  
Estelle Chaussard ◽  
Dario Solano Rojas

&lt;p&gt;Mexico City has been undergoing rapid subsidence for more than 100 years due to groundwater extraction. During the 2010s, rates surpassing 30 centimeters/year were observed by satellite geodetic measurements. Not only does this subsidence pose grave challenges for buildings, urban infrastructure, and water management, but it also changes the seismic response of the affected subsurface layers and thereby alters the seismic hazard in the metropolis that has seen devastating site effects both in the 1985 Michoacan and 2017 Puebla earthquake. We use data and numerical modeling of ambient noise auto-correlations to gain a better insight into the subsidence process through ambient noise techniques.&lt;/p&gt;&lt;p&gt;We establish a baseline for the long-term and seasonal variations of seismic velocity near the basin from long-term recordings of the Geoscope station UNM, located at the Universidad Nacional Aut&amp;#243;noma de M&amp;#233;xico in the geotechnical hill zone. We further study temporary recordings from the MASE array (MASE (2007): Meso America Subduction Experiment. Caltech. Dataset. doi:10.7909/C3RN35SP) to see how subsidence and other factors may influence seismic velocity in the geotechnical hill, transition, and lake zones.&lt;/p&gt;&lt;p&gt;We find that seasonal oscillations and a strong, rapid velocity drop coincident with the 2017 Puebla earthquake overlay a multi-year increasing trend in seismic velocity. We cautiously interpret the multi-year increase as a long-term effect of subsidence. We further study the temporal correlations of seismic velocity changes with other environmental time series like precipitation, and model auto-correlations in order to improve our understanding of their composition and sensitivity.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document