scholarly journals Brief communication: Increased glacier mass loss in the Russian High Arctic (2010–2017)

2022 ◽  
Vol 16 (1) ◽  
pp. 35-42
Author(s):  
Christian Sommer ◽  
Thorsten Seehaus ◽  
Andrey Glazovsky ◽  
Matthias H. Braun

Abstract. Glaciers in the Russian High Arctic have been subject to extensive atmospheric warming due to global climate change, yet their contribution to sea level rise has been relatively small over the past decades. Here we show surface elevation change measurements and geodetic mass balances of 93 % of all glacierized areas of Novaya Zemlya, Severnaya Zemlya, and Franz Josef Land using interferometric synthetic aperture radar measurements taken between 2010 and 2017. We calculate an overall mass loss rate of -22±6 Gt a−1, corresponding to a sea level rise contribution of 0.06±0.02 mm a−1. Compared to measurements prior to 2010, mass loss of glaciers on the Russian archipelagos has doubled in recent years.

2020 ◽  
Author(s):  
Christian Sommer ◽  
Thorsten Seehaus ◽  
Andrey Glazovsky ◽  
Matthias H. Braun

Abstract. Glaciers in the Russian High Arctic have been subject to extensive warming due to global climate change, yet their contribution to sea level rise has been relatively small over the past decades. Here we show surface elevation change measurements and geodetic mass balances of 93 % of all glacierized areas of Novaya Zemlya, Severnaya Zemlya and Franz Josef Land using interferometric synthetic aperture radar measurements taken between 2010 and 2017. We calculate an overall mass loss 10 rate of −23 ± 5 Gt a−1, corresponding to a sea level rise contribution of 0.06 ± 0.01 mm a−1. Compared to measurements prior to 2010, mass loss of glaciers on the Russian archipelagos has doubled in recent years.


1997 ◽  
Vol 43 (145) ◽  
pp. 489-494 ◽  
Author(s):  
Julian A. Dowdeswell ◽  
Meredith Williams

AbstractLandsat digital imagery was used to search the island archipelagos of Franz Josef Land, Severnaya Zemlya and Novaya Zemlya, Russian High Arctic, for the presence of looped moraines characteristic of past glacier surges. The imagery provides almost complete summer-time coverage of the 60 000 km2 of ice in these islands. very few surge-type glaciers are identified: none in Franz Josef Land, three in Novaya Zemlya and two on Severnaya Zemlya. This contrasts greatly with Svalbard (ice-covered area 36 600 km2), to the west, where 36% of glaciers and ice-cap drainage basins are inferred to surge. The strong climatic gradient across the Eurasian High Arctic, with decreasing temperature and moisture eastward, may provide a gross control on this pattern through colder glacier thermal structure, limiting basal drainage on the thinner ice masses in particular.


1997 ◽  
Vol 43 (145) ◽  
pp. 489-494 ◽  
Author(s):  
Julian A. Dowdeswell ◽  
Meredith Williams

AbstractLandsat digital imagery was used to search the island archipelagos of Franz Josef Land, Severnaya Zemlya and Novaya Zemlya, Russian High Arctic, for the presence of looped moraines characteristic of past glacier surges. The imagery provides almost complete summer-time coverage of the 60 000 km2of ice in these islands. very few surge-type glaciers are identified: none in Franz Josef Land, three in Novaya Zemlya and two on Severnaya Zemlya. This contrasts greatly with Svalbard (ice-covered area 36 600 km2), to the west, where 36% of glaciers and ice-cap drainage basins are inferred to surge. The strong climatic gradient across the Eurasian High Arctic, with decreasing temperature and moisture eastward, may provide a gross control on this pattern through colder glacier thermal structure, limiting basal drainage on the thinner ice masses in particular.


2005 ◽  
Vol 38 ◽  
pp. 182
Author(s):  
Κ. ΤΣΑΝΑΚΑΣ ◽  
Ε. ΚΑΡΥΜΠΑΛΗΣ ◽  
Ι. ΠΑΡΧΑΡΙΔΗΣ

The aim of this study is to detect shoreline changes along part of the coastal zone of Piena during the time period between 1969 and 2000 using aerial photographs and satellite images. Additionally, a quantitative and qualitative assessment of the future sea-level rise (triggered by the global climate change) implications to the physical and socioeconomic environment of the area is attempted taking into account various sea-level rise scenarios. Retreating as well as prograding regions along the study area were defined and retreating/prograding rates for the time periods 1969-1987 and 1987-2000 were estimated using GIS and Remote Sensing techniques. Building activity rates for the coastal area of Paralia Katerinis were also estimated for the same periods. The coastline of the study area is retreating^ except than the area north of torrent Mavroneri where a progradation rate of 48 cm/year was estimated between 1969 and 1987. Retreating rate of the coast for the northern part of the area (Saltworks) is estimated to be 25 cm/year and 19 cm/yrear for the periods of 1969-1987 and 1987-2000 respectively. The broader study area is particularly vulnerable to a potential future sealevel rise due to the low-lying topography of the coastal zone and intensive socioeconomic activities such as tourism and commerce.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Michael E. Weber ◽  
Nicholas R. Golledge ◽  
Chris J. Fogwill ◽  
Chris S. M. Turney ◽  
Zoë A. Thomas

AbstractEmerging ice-sheet modeling suggests once initiated, retreat of the Antarctic Ice Sheet (AIS) can continue for centuries. Unfortunately, the short observational record cannot resolve the tipping points, rate of change, and timescale of responses. Iceberg-rafted debris data from Iceberg Alley identify eight retreat phases after the Last Glacial Maximum that each destabilized the AIS within a decade, contributing to global sea-level rise for centuries to a millennium, which subsequently re-stabilized equally rapidly. This dynamic response of the AIS is supported by (i) a West Antarctic blue ice record of ice-elevation drawdown >600 m during three such retreat events related to globally recognized deglacial meltwater pulses, (ii) step-wise retreat up to 400 km across the Ross Sea shelf, (iii) independent ice sheet modeling, and (iv) tipping point analysis. Our findings are consistent with a growing body of evidence suggesting the recent acceleration of AIS mass loss may mark the beginning of a prolonged period of ice sheet retreat and substantial global sea level rise.


2017 ◽  
Author(s):  
J. Rachel Carr ◽  
Heather Bell ◽  
Rebecca Killick ◽  
Tom Holt

Abstract. Novaya Zemlya (NVZ) has experienced rapid ice loss and accelerated marine-terminating glacier retreat during the past two decades. However, it is unknown whether this retreat is exceptional longer-term and/or whether it has persisted since 2010. Investigating this is vital, as dynamic thinning may contribute substantially to ice loss from NVZ, but is not currently included in sea level rise predictions. Here, we use remotely sensed data to assess controls on NVZ glacier retreat between the 1973/6 and 2015. Glaciers that terminate into lakes or the ocean receded 3.5 times faster than those that terminate on land. Between 2000 and 2013, retreat rates were significantly higher on marine-terminating outlet glaciers than during the previous 27 years, and we observe widespread slow-down in retreat, and even advance, between 2013 and 2015. There were some common patterns in the timing of glacier retreat, but the magnitude varied between individual glaciers. Rapid retreat between 2000–2013 corresponds to a period of significantly warmer air temperatures and reduced sea ice concentrations, and to changes in the NAO and AMO. We need to assess the impact of this accelerated retreat on dynamic ice losses from NVZ, to accurately quantify its future sea level rise contribution.


2018 ◽  
Vol 97 (3) ◽  
pp. 79-127 ◽  
Author(s):  
Bert L.A. Vermeersen ◽  
Aimée B.A. Slangen ◽  
Theo Gerkema ◽  
Fedor Baart ◽  
Kim M. Cohen ◽  
...  

AbstractRising sea levels due to climate change can have severe consequences for coastal populations and ecosystems all around the world. Understanding and projecting sea-level rise is especially important for low-lying countries such as the Netherlands. It is of specific interest for vulnerable ecological and morphodynamic regions, such as the Wadden Sea UNESCO World Heritage region.Here we provide an overview of sea-level projections for the 21st century for the Wadden Sea region and a condensed review of the scientific data, understanding and uncertainties underpinning the projections. The sea-level projections are formulated in the framework of the geological history of the Wadden Sea region and are based on the regional sea-level projections published in the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR5). These IPCC AR5 projections are compared against updates derived from more recent literature and evaluated for the Wadden Sea region. The projections are further put into perspective by including interannual variability based on long-term tide-gauge records from observing stations at Den Helder and Delfzijl.We consider three climate scenarios, following the Representative Concentration Pathways (RCPs), as defined in IPCC AR5: the RCP2.6 scenario assumes that greenhouse gas (GHG) emissions decline after 2020; the RCP4.5 scenario assumes that GHG emissions peak at 2040 and decline thereafter; and the RCP8.5 scenario represents a continued rise of GHG emissions throughout the 21st century. For RCP8.5, we also evaluate several scenarios from recent literature where the mass loss in Antarctica accelerates at rates exceeding those presented in IPCC AR5.For the Dutch Wadden Sea, the IPCC AR5-based projected sea-level rise is 0.07±0.06m for the RCP4.5 scenario for the period 2018–30 (uncertainties representing 5–95%), with the RCP2.6 and RCP8.5 scenarios projecting 0.01m less and more, respectively. The projected rates of sea-level change in 2030 range between 2.6mma−1for the 5th percentile of the RCP2.6 scenario to 9.1mma−1for the 95th percentile of the RCP8.5 scenario. For the period 2018–50, the differences between the scenarios increase, with projected changes of 0.16±0.12m for RCP2.6, 0.19±0.11m for RCP4.5 and 0.23±0.12m for RCP8.5. The accompanying rates of change range between 2.3 and 12.4mma−1in 2050. The differences between the scenarios amplify for the 2018–2100 period, with projected total changes of 0.41±0.25m for RCP2.6, 0.52±0.27m for RCP4.5 and 0.76±0.36m for RCP8.5. The projections for the RCP8.5 scenario are larger than the high-end projections presented in the 2008 Delta Commission Report (0.74m for 1990–2100) when the differences in time period are considered. The sea-level change rates range from 2.2 to 18.3mma−1for the year 2100.We also assess the effect of accelerated ice mass loss on the sea-level projections under the RCP8.5 scenario, as recent literature suggests that there may be a larger contribution from Antarctica than presented in IPCC AR5 (potentially exceeding 1m in 2100). Changes in episodic extreme events, such as storm surges, and periodic (tidal) contributions on (sub-)daily timescales, have not been included in these sea-level projections. However, the potential impacts of these processes on sea-level change rates have been assessed in the report.


Minerals ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 36 ◽  
Author(s):  
Victoria B. Ershova ◽  
Andrei V. Prokopiev ◽  
Andrey K. Khudoley ◽  
Tom Andersen ◽  
Kåre Kullerud ◽  
...  

U–Pb and Lu–Hf isotope analyses of detrital zircons collected from metasedimentary rocks from the southern part of Kara Terrane (northern Taimyr and Severnaya Zemlya archipelago) provide vital information about the paleogeographic and tectonic evolution of the Russian High Arctic. The detrital zircon signatures of the seven dated samples are very similar, suggesting a common provenance for the clastic detritus. The majority of the dated grains belong to the late Neoproterozoic to Cambrian ages, which suggests the maximum depositional age of the enclosing sedimentary units to be Cambrian. The εHf(t) values indicate that juvenile magma mixed with evolved continental crust and the zircons crystallized within a continental magmatic arc setting. Our data strongly suggest that the main provenance for the studied clastics was located within the Timanian Orogen. A review of the available detrital zircon ages from late Neoproterozoic to Cambrian strata across the wider Arctic strongly suggests that Kara Terrane, Novaya Zemlya, Seward Peninsula (Arctic Alaska), Alexander Terrane, De Long Islands, and Scandinavian Caledonides all formed a single tectonic domain during the Cambrian age, with clastics predominantly sourced from the Timanian Orogen.


2013 ◽  
Vol 26 (8) ◽  
pp. 2502-2513 ◽  
Author(s):  
N. Bouttes ◽  
J. M. Gregory ◽  
J. A. Lowe

Abstract During the last century, global climate has been warming, and projections indicate that such a warming is likely to continue over coming decades. Most of the extra heat is stored in the ocean, resulting in thermal expansion of seawater and global mean sea level rise. Previous studies have shown that after CO2 emissions cease or CO2 concentration is stabilized, global mean surface air temperature stabilizes or decreases slowly, but sea level continues to rise. Using idealized CO2 scenario simulations with a hierarchy of models including an AOGCM and a step-response model, the authors show how the evolution of thermal expansion can be interpreted in terms of the climate energy balance and the vertical profile of ocean warming. Whereas surface temperature depends on cumulative CO2 emissions, sea level rise due to thermal expansion depends on the time profile of emissions. Sea level rise is smaller for later emissions, implying that targets to limit sea level rise would need to refer to the rate of emissions, not only to the time integral. Thermal expansion is in principle reversible, but to halt or reverse it quickly requires the radiative forcing to be reduced substantially, which is possible on centennial time scales only by geoengineering. If it could be done, the results indicate that heat would leave the ocean more readily than it entered, but even if thermal expansion were returned to zero, the geographical pattern of sea level would be altered. Therefore, despite any aggressive CO2 mitigation, regional sea level change is inevitable.


Sign in / Sign up

Export Citation Format

Share Document