scholarly journals Estimating Early-Winter Antarctic Sea Ice Thickness From Deformed Ice Morphology

Author(s):  
M. Jeffrey Mei ◽  
Ted Maksym ◽  
Hanumant Singh

Abstract. Satellites have documented variability in sea ice areal extent for decades, but there are significant challenges in obtaining analogous measurements for sea ice thickness data in the Antarctic, primarily due to difficulties in estimating snow cover on sea ice. Sea ice thickness can be estimated from surface elevation measurements, such as those from airborne/satellite LiDAR, by assuming some snow depth distribution or empirically fitting with limited data from drilled transects from various field studies. Current estimates for large-scale Antarctic sea ice thickness have errors as high as ~ 50 %, and simple statistical models of small-scale mean thickness have similarly high errors. Averaging measurements over hundreds of meters can improve the model fits to existing data, though these results do not necessarily generalize to other floes. At present, we do not have algorithms that accurately estimate sea ice thickness at high resolutions. We use a convolutional neural network with laser altimetry profiles of sea ice surfaces at 0.2 m resolution to show that it is possible to estimate sea ice thickness at 20 m resolution with better accuracy and generalization than current methods (mean relative errors ~ 15 %). Moreover, the neural network does not require specifying snow depth/density, which increases its potential applications to other LiDAR datasets. The learned features appear to correspond to basic morphological features, and these features appear to be common to other floes with the same climatology. This suggests that there is a relationship between the surface morphology and the ice thickness. The model has a mean relative error of 20 % when applied to a new floe from the region and season, which is much lower than the mean relative error for a linear fit (errors up to 47 %). This method may be extended to lower-resolution, larger-footprint data such as such as IceBridge, and suggests a possible avenue to reduce errors in satellite estimates of Antarctic sea ice thickness from ICESat-2 over current methods, especially at smaller scale.

2019 ◽  
Vol 13 (11) ◽  
pp. 2915-2934 ◽  
Author(s):  
M. Jeffrey Mei ◽  
Ted Maksym ◽  
Blake Weissling ◽  
Hanumant Singh

Abstract. Satellites have documented variability in sea ice areal extent for decades, but there are significant challenges in obtaining analogous measurements for sea ice thickness data in the Antarctic, primarily due to difficulties in estimating snow cover on sea ice. Sea ice thickness (SIT) can be estimated from snow freeboard measurements, such as those from airborne/satellite lidar, by assuming some snow depth distribution or empirically fitting with limited data from drilled transects from various field studies. Current estimates for large-scale Antarctic SIT have errors as high as ∼50 %, and simple statistical models of small-scale mean thickness have similarly high errors. Averaging measurements over hundreds of meters can improve the model fits to existing data, though these results do not necessarily generalize to other floes. At present, we do not have algorithms that accurately estimate SIT at high resolutions. We use a convolutional neural network with laser altimetry profiles of sea ice surfaces at 0.2 m resolution to show that it is possible to estimate SIT at 20 m resolution with better accuracy and generalization than current methods (mean relative errors ∼15 %). Moreover, the neural network does not require specification of snow depth or density, which increases its potential applications to other lidar datasets. The learned features appear to correspond to basic morphological features, and these features appear to be common to other floes with the same climatology. This suggests that there is a relationship between the surface morphology and the ice thickness. The model has a mean relative error of 20 % when applied to a new floe from the region and season. This method may be extended to lower-resolution, larger-footprint data such as such as Operation IceBridge, and it suggests a possible avenue to reduce errors in satellite estimates of Antarctic SIT from ICESat-2 over current methods, especially at smaller scales.


2018 ◽  
Author(s):  
Daniel Price ◽  
Iman Soltanzadeh ◽  
Wolfgang Rack

Abstract. Knowledge of the snow depth distribution on Antarctic sea ice is poor but is critical to obtaining sea ice thickness from satellite altimetry measurements of freeboard. We examine the usefulness of various snow products to provide snow depth information over Antarctic fast ice with a focus on a novel approach using a high-resolution numerical snow accumulation model (SnowModel). We compare this model to results from ECMWF ERA-Interim precipitation, EOS Aqua AMSR-E passive microwave snow depths and in situ measurements at the end of the sea ice growth season. The fast ice was segmented into three areas by fastening date and the onset of snow accumulation was calibrated to these dates. SnowModel falls within 0.02 m snow water equivalent (swe) of in situ measurements across the entire study area, but exhibits deviations of 0.05 m swe from these measurements in the east where large topographic features appear to have caused a positive bias in snow depth. AMSR-E provides swe values half that of SnowModel for the majority of the sea ice growth season. The coarser resolution ERA-Interim, not segmented for sea ice freeze up area reveals a mean swe value 0.01 m higher than in situ measurements. These various snow datasets and in situ information are used to infer sea ice thickness in combination with CryoSat-2 (CS-2) freeboard data. CS-2 is capable of capturing the seasonal trend of sea ice freeboard growth but thickness results are highly dependent on the assumptions involved in separating snow and ice freeboard. With various assumptions about the radar penetration into the snow cover, the sea ice thickness estimates vary by up to 2 m. However, we find the best agreement between CS-2 derived and in situ thickness when a radar penetration of 0.05-0.10 m into the snow cover is assumed.


2020 ◽  
Author(s):  
Jean-Francois Lemieux ◽  
Bruno Tremblay ◽  
Mathieu Plante

Abstract. Sea ice pressure poses great risk for navigation; it can lead to ship besetting and damages. Contemporary large-scale sea ice forecasting systems can predict the evolution of sea ice pressure. There is, however, a mismatch between the spatial resolution of these systems (a few km) and the typical dimensions of ships (a few tens of m) navigating in ice-covered regions. In this paper, we investigate the downscaling of sea ice pressure from the km-scale to scales relevant for ships. Results show that sub-grid scale pressure values can be significantly larger than the large-scale pressure (up to $\\sim$ 4x larger in our numerical experiments). High pressure at the sub-grid scale is associated with the presence of defects (e.g. a lead). Numerical experiments show that a ship creates its own high stress concentration by forming a lead in its wake while navigating. These results also highlight the difficulty of forecasting the small-scale distribution of pressure and especially the largest values. Indeed, this distribution strongly depends on variables that are not well constrained: the rheology parameters and the small-scale structure of sea ice thickness (more importantly the length of the lead behind the ship).


2019 ◽  
Vol 13 (4) ◽  
pp. 1409-1422
Author(s):  
Daniel Price ◽  
Iman Soltanzadeh ◽  
Wolfgang Rack ◽  
Ethan Dale

Abstract. Knowledge of the snow depth distribution on Antarctic sea ice is poor but is critical to obtaining sea ice thickness from satellite altimetry measurements of the freeboard. We examine the usefulness of various snow products to provide snow depth information over Antarctic fast ice in McMurdo Sound with a focus on a novel approach using a high-resolution numerical snow accumulation model (SnowModel). We compare this model to results from ECMWF ERA-Interim precipitation, EOS Aqua AMSR-E passive microwave snow depths and in situ measurements at the end of the sea ice growth season in 2011. The fast ice was segmented into three areas by fastening date and the onset of snow accumulation was calibrated to these dates. SnowModel captures the spatial snow distribution gradient in McMurdo Sound and falls within 2 cm snow water equivalent (s.w.e) of in situ measurements across the entire study area. However, it exhibits deviations of 5 cm s.w.e. from these measurements in the east where the effect of local topographic features has caused an overestimate of snow depth in the model. AMSR-E provides s.w.e. values half that of SnowModel for the majority of the sea ice growth season. The coarser-resolution ERA-Interim produces a very high mean s.w.e. value 20 cm higher than the in situ measurements. These various snow datasets and in situ information are used to infer sea ice thickness in combination with CryoSat-2 (CS-2) freeboard data. CS-2 is capable of capturing the seasonal trend of sea ice freeboard growth but thickness results are highly dependent on what interface the retracked CS-2 height is assumed to represent. Because of this ambiguity we vary the proportion of ice and snow that represents the freeboard – a mathematical alteration of the radar penetration into the snow cover – and assess this uncertainty in McMurdo Sound. The ranges in sea ice thickness uncertainty within these bounds, as means of the entire growth season, are 1.08, 4.94 and 1.03 m for SnowModel, ERA-Interim and AMSR-E respectively. Using an interpolated in situ snow dataset we find the best agreement between CS-2-derived and in situ thickness when this interface is assumed to be 0.07 m below the snow surface.


2015 ◽  
Vol 56 (69) ◽  
pp. 107-119 ◽  
Author(s):  
Stefan Kern ◽  
Gunnar Spreen

AbstractA sensitivity study was carried out for the lowest-level elevation method to retrieve total (sea ice + snow) freeboard from Ice, Cloud and land Elevation Satellite (ICESat) elevation measurements in the Weddell Sea, Antarctica. Varying the percentage (P) of elevations used to approximate the instantaneous sea-surface height can cause widespread changes of a few to ˃10cm in the total freeboard obtained. Other input parameters have a smaller influence on the overall mean total freeboard but can cause large regional differences. These results, together with published ICESat elevation precision and accuracy, suggest that three times the mean per gridcell single-laser-shot error budget can be used as an estimate for freeboard uncertainty. Theoretical relative ice thickness uncertainty ranges between 20% and 80% for typical freeboard and snow properties. Ice thickness is computed from total freeboard using Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) snow depth data. Average ice thickness for the Weddell Sea is 1.73 ± 0.38 m for ICESat measurements from 2004 to 2006, in agreement with previous work. The mean uncertainty is 0.72 ± 0.09 m. Our comparison with data of an alternative approach, which assumes that sea-ice freeboard is zero and that total freeboard equals snow depth, reveals an average sea-ice thickness difference of ∼0.77m.


2020 ◽  
Vol 14 (12) ◽  
pp. 4453-4474
Author(s):  
Sahra Kacimi ◽  
Ron Kwok

Abstract. We offer a view of the Antarctic sea ice cover from lidar (ICESat-2) and radar (CryoSat-2) altimetry, with retrievals of freeboard, snow depth, and ice thickness that span an 8-month winter between 1 April and 16 November 2019. Snow depths are from freeboard differences. The multiyear ice observed in the West Weddell sector is the thickest, with a mean sector thickness > 2 m. The thinnest ice is found near polynyas (Ross Sea and Ronne Ice Shelf) where new ice areas are exported seaward and entrained in the surrounding ice cover. For all months, the results suggest that ∼ 65 %–70 % of the total freeboard is comprised of snow. The remarkable mechanical convergence in coastal Amundsen Sea, associated with onshore winds, was captured by ICESat-2 and CryoSat-2. We observe a corresponding correlated increase in freeboards, snow depth, and ice thickness. While the spatial patterns in the freeboard, snow depth, and thickness composites are as expected, the observed seasonality in these variables is rather weak. This most likely results from competing processes (snowfall, snow redistribution, snow and ice formation, ice deformation, and basal growth and melt) that contribute to uncorrelated changes in the total and radar freeboards. Evidence points to biases in CryoSat-2 estimates of ice freeboard of at least a few centimeters from high salinity snow (> 10) in the basal layer resulting in lower or higher snow depth and ice thickness retrievals, although the extent of these areas cannot be established in the current data set. Adjusting CryoSat-2 freeboards by 3–6 cm gives a circumpolar ice volume of 17 900–15 600 km3 in October, for an average thickness of ∼ 1.29–1.13 m. Validation of Antarctic sea ice parameters remains a challenge, as there are no seasonally and regionally diverse data sets that could be used to assess these large-scale satellite retrievals.


2021 ◽  
Vol 15 (10) ◽  
pp. 4909-4927
Author(s):  
Isolde A. Glissenaar ◽  
Jack C. Landy ◽  
Alek A. Petty ◽  
Nathan T. Kurtz ◽  
Julienne C. Stroeve

Abstract. In the Arctic, multi-year sea ice is being rapidly replaced by seasonal sea ice. Baffin Bay, situated between Greenland and Canada, is part of the seasonal ice zone. In this study, we present a long-term multi-mission assessment (2003–2020) of spring sea ice thickness in Baffin Bay from satellite altimetry and sea ice charts. Sea ice thickness within Baffin Bay is calculated from Envisat, ICESat, CryoSat-2, and ICESat-2 freeboard estimates, alongside a proxy from the ice chart stage of development that closely matches the altimetry data. We study the sensitivity of sea ice thickness results estimated from an array of different snow depth and snow density products and methods for redistributing low-resolution snow data onto along-track altimetry freeboards. The snow depth products that are applied include a reference estimated from the Warren climatology, a passive microwave snow depth product, and the dynamic snow scheme SnowModel-LG. We find that applying snow depth redistribution to represent small-scale snow variability has a considerable impact on ice thickness calculations from laser freeboards but was unnecessary for radar freeboards. Decisions on which snow loading product to use and whether to apply snow redistribution can lead to different conclusions on trends and physical mechanisms. For instance, we find an uncertainty envelope around the March mean sea ice thickness of 13 % for different snow depth/density products and redistribution methods. Consequently, trends in March sea ice thickness from 2003–2020 range from −23 to 17 cm per decade, depending on which snow depth/density product and redistribution method is applied. Over a longer timescale, since 1996, the proxy ice chart thickness product has demonstrated statistically significant thinning within Baffin Bay of 7 cm per decade. Our study provides further evidence for long-term asymmetrical trends in Baffin Bay sea ice thickness (with −17.6 cm per decade thinning in the west and 10.8 cm per decade thickening in the east of the bay) since 2003. This asymmetrical thinning is consistent for all combinations of snow product and processing method, but it is unclear what may have driven these changes.


2020 ◽  
Vol 12 (9) ◽  
pp. 1494
Author(s):  
M. Jeffrey Mei ◽  
Ted Maksym

The snow depth on Antarctic sea ice is critical to estimating the sea ice thickness distribution from laser altimetry data, such as from Operation IceBridge or ICESat-2. Snow redistributed by wind collects around areas of deformed ice and forms a wide variety of features on sea ice; the morphology of these features may provide some indication of the mean snow depth. Here, we apply a textural segmentation algorithm to classify and group similar textures to infer the distribution of snow using snow surface freeboard measurements from Operation IceBridge campaigns over the Weddell Sea. We find that texturally-similar regions have similar snow/ice ratios, even when they have different absolute snow depth measurements. This allows for the extrapolation of nadir-looking snow radar data using two-dimensional surface altimetry scans, providing a two-dimensional estimate of the snow depth with ∼22% error. We show that at the floe scale (∼180 m), snow depth can be directly estimated from the snow surface with ∼20% error using deep learning techniques, and that the learned filters are comparable to standard textural analysis techniques. This error drops to ∼14% when averaged over 1.5 km scales. These results suggest that surface morphological information can improve remotely-sensed estimates of snow depth, and hence sea ice thickness, as compared to current methods. Such methods may be useful for reducing uncertainty in Antarctic sea ice thickness estimates from ICESat-2.


2021 ◽  
Author(s):  
Jinfei Wang ◽  
Chao Min ◽  
Robert Ricker ◽  
Qian Shi ◽  
Bo Han ◽  
...  

Abstract. The crucial role that Antarctic sea ice plays in the global climate system is strongly linked to its thickness. While field observations are too sparse in the Antarctic to determine long-term trends of the Antarctic sea ice thickness (SIT) on a hemispheric scale, satellite radar altimetry data can be applied with a promising prospect. European Space Agency Climate Change Initiative – Sea Ice Project (ESA SICCI) includes sea ice freeboard and sea ice thickness derived from Envisat, covering the entire Antarctic year-round from 2002 to 2012. In this study, the SICCI Envisat SIT in the Antarctic is first compared with a conceptually new ICESat SIT product retrieved from an algorithm employing modified ice density. Both data sets are compared to SIT estimates from upward-looking sonar (ULS) in the Weddell Sea, showing mean differences (MD) and standard deviations (SD) of 1.29 (0.65) m for Envisat-ULS, while we find 1.11 (0.81) m for ICESat-ULS, respectively. The inter-comparisons are conducted for three seasons except winter, based on the ICESat operating periods. According to the results, the differences between Envisat and ICESat SIT reveal significant temporal and spatial variations. More specifically, the smallest seasonal SIT MD (with SD shown in brackets) of 0.00 m (0.39 m) for Envisat-ICESat for the entire Antarctic is found in spring (October–November) while larger MD of 0.52 m (0.68 m) and 0.57 m (0.45 m) exist in summer (February–March) and autumn (May–June), respectively. It is also shown that from autumn to spring, mean Envisat SIT decreases while mean ICESat SIT increases. Our findings suggest that overestimation of Envisat sea ice freeboard, potentially caused by radar backscatter originating from inside the snow layer, primarily accounts for the differences between Envisat and ICESat SIT in summer and autumn, while the uncertainties of snow depth product are not the dominant cause of the differences.To get a better understanding of the characteristics of the Envisat-derived sea ice thickness product, we firstly conduct a comprehensive comparison between Envisat and ICESat-1 sea ice thickness. Their differences reveal significant temporal and spatial variations. Our findings suggest that overestimation of Envisat sea ice freeboard primarily accounts for the differences in summer and autumn, while the uncertainties of snow depth product are not the dominant cause of the differences. 


Author(s):  
Adam Steer ◽  
Petra Heil ◽  
Christopher Watson ◽  
Robert A. Massom ◽  
Jan L. Lieser ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document