scholarly journals Brief communication: Application of a muonic cosmic ray snow gauge to monitor the snow water equivalent on alpine glaciers

2021 ◽  
Author(s):  
Rebecca Gugerli ◽  
Darin Desilets ◽  
Nadine Salzmann

Abstract. Monitoring the snow water equivalent (SWE) in the harsh environments of high mountain regions is a challenge. Here, we explore the use of muon counts to infer SWE. We deployed a muonic cosmic ray snow gauge (µ-CRSG) on a Swiss glacier during the snow rich winter season 2020/21 (almost 2000 mm w.e.). The µ-CRSG measurements agree well with measurements by a neutronic cosmic ray snow gauge (n-CRSG) and they lie within the uncertainty of manual observations. We conclude that the µ-CRSG is a highly promising method to monitor SWE in remote high mountain environments with several advantages over the n-CRSG.

2019 ◽  
Vol 13 (12) ◽  
pp. 3413-3434 ◽  
Author(s):  
Rebecca Gugerli ◽  
Nadine Salzmann ◽  
Matthias Huss ◽  
Darin Desilets

Abstract. Snow water equivalent (SWE) measurements of seasonal snowpack are crucial in many research fields. Yet accurate measurements at a high temporal resolution are difficult to obtain in high mountain regions. With a cosmic ray sensor (CRS), SWE can be inferred from neutron counts. We present the analyses of temporally continuous SWE measurements by a CRS on an alpine glacier in Switzerland (Glacier de la Plaine Morte) over two winter seasons (2016/17 and 2017/18), which differed markedly in the amount and timing of snow accumulation. By combining SWE with snow depth measurements, we calculate the daily mean density of the snowpack. Compared to manual field observations from snow pits, the autonomous measurements overestimate SWE by +2 % ± 13 %. Snow depth and the bulk snow density deviate from the manual measurements by ±6 % and ±9 %, respectively. The CRS measured with high reliability over two winter seasons and is thus considered a promising method to observe SWE at remote alpine sites. We use the daily observations to classify winter season days into those dominated by accumulation (solid precipitation, snow drift), ablation (snow drift, snowmelt) or snow densification. For each of these process-dominated days the prevailing meteorological conditions are distinct. The continuous SWE measurements were also used to define a scaling factor for precipitation amounts from nearby meteorological stations. With this analysis, we show that a best-possible constant scaling factor results in cumulative precipitation amounts that differ by a mean absolute error of less than 80 mm w.e. from snow accumulation at this site.


2021 ◽  
Vol 18 ◽  
pp. 7-20
Author(s):  
Rebecca Gugerli ◽  
Matteo Guidicelli ◽  
Marco Gabella ◽  
Matthias Huss ◽  
Nadine Salzmann

Abstract. Accurate and reliable solid precipitation estimates for high mountain regions are crucial for many research applications. Yet, measuring snowfall at high elevation remains a major challenge. In consequence, observational coverage is typically sparse, and the validation of spatially distributed precipitation products is complicated. This study presents a novel approach using reliable daily snow water equivalent (SWE) estimates by a cosmic ray sensor on two Swiss glacier sites to assess the performance of various gridded precipitation products. The ground observations are available during two and four winter seasons. The performance of three readily-available precipitation data products based on different data sources (gauge-based, remotely-sensed, and re-analysed) is assessed in terms of their accuracy compared to the ground reference. Furthermore, we include a data set, which corresponds to the remotely-sensed product with a local adjustment to independent SWE measurements. We find a large bias of all precipitation products at a monthly and seasonal resolution, which also shows a seasonal trend. Moreover, the performance of the precipitation products largely depends on in situ wind direction during snowfall events. The varying performance of the three precipitation products can be partly explained with their compilation background and underlying data basis.


2021 ◽  
Vol 13 (4) ◽  
pp. 616
Author(s):  
Rafael Alonso ◽  
José María García del Pozo ◽  
Samuel T. Buisán ◽  
José Adolfo Álvarez

Snow makes a great contribution to the hydrological cycle in cold regions. The parameter to characterize available the water from the snow cover is the well-known snow water equivalent (SWE). This paper presents a near-surface-based radar for determining the SWE from the measured complex spectral reflectance of the snowpack. The method is based in a stepped-frequency continuous wave radar (SFCW), implemented in a coherent software defined radio (SDR), in the range from 150 MHz to 6 GHz. An electromagnetic model to solve the electromagnetic reflectance of a snowpack, including the frequency and wetness dependence of the complex relative dielectric permittivity of snow layers, is shown. Using the previous model, an approximated method to calculate the SWE is proposed. The results are presented and compared with those provided by a cosmic-ray neutron SWE gauge over the 2019–2020 winter in the experimental AEMet Formigal-Sarrios test site. This experimental field is located in the Spanish Pyrenees at an elevation of 1800 m a.s.l. The results suggest the viability of the approximate method. Finally, the feasibility of an auxiliary snow height measurement sensor based on a 120 GHz frequency modulated continuous wave (FMCW) radar sensor, is shown.


2021 ◽  
Author(s):  
J. R. Wallbank ◽  
S. J. Cole ◽  
R. J. Moore ◽  
S. R. Anderson ◽  
E. J. Mellor

1987 ◽  
Vol 9 ◽  
pp. 39-44 ◽  
Author(s):  
A.T.C. Chang ◽  
J.L. Foster ◽  
D.K. Hall

Snow covers about 40 million km2of the land area of the Northern Hemisphere during the winter season. The accumulation and depletion of snow is dynamically coupled with global hydrological and climatological processes. Snow covered area and snow water equivalent are two essential measurements. Snow cover maps are produced routinely by the National Environmental Satellite Data and Information Service of the National Oceanic and Atmospheric Administration (NOAA/NESDIS) and by the US Air Force Global Weather Center (USAFGWC). The snow covered area reported by these two groups sometimes differs by several million km2, Preliminary analysis is performed to evaluate the accuracy of these products.Microwave radiation penetrating through clouds and snowpacks could provide depth and water equivalent information about snow fields. Based on theoretical calculations, snow covered area and snow water equivalent retrieval algorithms have been developed. Snow cover maps for the Northern Hemisphere have been derived from Nimbus-7 SMMR data for a period of six years (1978–1984). Intercomparisons of SMMR, NOAA/NESDIS and USAFGWC snow maps have been conducted to evaluate and assess the accuracy of SMMR derived snow maps. The total snow covered area derived from SMMR is usually about 10% less than the other two products. This is because passive microwave sensors cannot detect shallow, dry snow which is less than 5 cm in depth. The major geographic regions in which the differences among these three products are the greatest are in central Asia and western China. Future study is required to determine the absolute accuracy of each product.Preliminary snow water equivalent maps have also been produced. Comparisons are made between retrieved snow water equivalent over large area and available snow depth measurements. The results of the comparisons are good for uniform snow covered areas, such as the Canadian high plains and the Russian steppes. Heavily forested and mountainous areas tend to mask out the microwave snow signatures and thus comparisons with measured water equivalent are poorer in those areas.


1987 ◽  
Vol 9 ◽  
pp. 39-44 ◽  
Author(s):  
A.T.C. Chang ◽  
J.L. Foster ◽  
D.K. Hall

Snow covers about 40 million km2 of the land area of the Northern Hemisphere during the winter season. The accumulation and depletion of snow is dynamically coupled with global hydrological and climatological processes. Snow covered area and snow water equivalent are two essential measurements. Snow cover maps are produced routinely by the National Environmental Satellite Data and Information Service of the National Oceanic and Atmospheric Administration (NOAA/NESDIS) and by the US Air Force Global Weather Center (USAFGWC). The snow covered area reported by these two groups sometimes differs by several million km2, Preliminary analysis is performed to evaluate the accuracy of these products.Microwave radiation penetrating through clouds and snowpacks could provide depth and water equivalent information about snow fields. Based on theoretical calculations, snow covered area and snow water equivalent retrieval algorithms have been developed. Snow cover maps for the Northern Hemisphere have been derived from Nimbus-7 SMMR data for a period of six years (1978–1984). Intercomparisons of SMMR, NOAA/NESDIS and USAFGWC snow maps have been conducted to evaluate and assess the accuracy of SMMR derived snow maps. The total snow covered area derived from SMMR is usually about 10% less than the other two products. This is because passive microwave sensors cannot detect shallow, dry snow which is less than 5 cm in depth. The major geographic regions in which the differences among these three products are the greatest are in central Asia and western China. Future study is required to determine the absolute accuracy of each product.Preliminary snow water equivalent maps have also been produced. Comparisons are made between retrieved snow water equivalent over large area and available snow depth measurements. The results of the comparisons are good for uniform snow covered areas, such as the Canadian high plains and the Russian steppes. Heavily forested and mountainous areas tend to mask out the microwave snow signatures and thus comparisons with measured water equivalent are poorer in those areas.


2021 ◽  
Author(s):  
Ondrej Hotovy ◽  
Michal Jenicek

<p>Seasonal snowpack significantly influences the catchment runoff and thus represents an important input for the hydrological cycle. Changes in the precipitation distribution and intensity, as well as a shift from snowfall to rain is expected in the future due to climate changes. As a result, rain-on-snow events, which are considered to be one of the main causes of floods in winter and spring, may occur more frequently. Heat from liquid precipitation constitutes one of the snowpack energy balance components. Consequently, snowmelt and runoff may be strongly affected by these temperature and precipitation changes.</p><p>The objective of this study is 1) to evaluate the frequency, inter-annual variability and extremity of rain-on-snow events in the past based on existing measurements together with an analysis of changes in the snowpack energy balance, and 2) to simulate the effect of predicted increase in air temperature on the occurrence of rain-on-snow events in the future. We selected 40 near-natural mountain catchments in Czechia with significant snow influence on runoff and with available long-time series (>35 years) of daily hydrological and meteorological variables. A semi-distributed conceptual model, HBV-light, was used to simulate the individual components of the water cycle at a catchment scale. The model was calibrated for each of study catchments by using 100 calibration trials which resulted in respective number of optimized parameter sets. The model performance was evaluated against observed runoff and snow water equivalent. Rain-on-snow events definition by threshold values for air temperature, snow depth, rain intensity and snow water equivalent decrease allowed us to analyze inter-annual variations and trends in rain-on-snow events during the study period 1965-2019 and to explain the role of different catchment attributes.</p><p>The preliminary results show that a significant change of rain-on-snow events related to increasing air temperature is not clearly evident. Since both air temperature and elevation seem to be an important rain-on-snow drivers, there is an increasing rain-on-snow events occurrence during winter season due to a decrease in snowfall fraction. In contrast, a decrease in total number of events was observed due to the shortening of the period with existing snow cover on the ground. Modelling approach also opened further questions related to model structure and parameterization, specifically how individual model procedures and parameters represent the real natural processes. To understand potential model artefacts might be important when using HBV or similar bucket-type models for impact studies, such as modelling the impact of climate change on catchment runoff.</p>


2014 ◽  
Vol 8 (2) ◽  
pp. 471-485 ◽  
Author(s):  
S. Jörg-Hess ◽  
F. Fundel ◽  
T. Jonas ◽  
M. Zappa

Abstract. Gridded snow water equivalent (SWE) data sets are valuable for estimating the snow water resources and verify different model systems, e.g. hydrological, land surface or atmospheric models. However, changing data availability represents a considerable challenge when trying to derive consistent time series for SWE products. In an attempt to improve the product consistency, we first evaluated the differences between two climatologies of SWE grids that were calculated on the basis of data from 110 and 203 stations, respectively. The "shorter" climatology (2001–2009) was produced using 203 stations (map203) and the "longer" one (1971–2009) 110 stations (map110). Relative to map203, map110 underestimated SWE, especially at higher elevations and at the end of the winter season. We tested the potential of quantile mapping to compensate for mapping errors in map110 relative to map203. During a 9 yr calibration period from 2001 to 2009, for which both map203 and map110 were available, the method could successfully refine the spatial and temporal SWE representation in map110 by making seasonal, regional and altitude-related distinctions. Expanding the calibration to the full 39 yr showed that the general underestimation of map110 with respect to map203 could be removed for the whole winter. The calibrated SWE maps fitted the reference (map203) well when averaged over regions and time periods, where the mean error is approximately zero. However, deviations between the calibrated maps and map203 were observed at single grid cells and years. When we looked at three different regions in more detail, we found that the calibration had the largest effect in the region with the highest proportion of catchment areas above 2000 m a.s.l. and that the general underestimation of map110 compared to map203 could be removed for the entire snow season. The added value of the calibrated SWE climatology is illustrated with practical examples: the verification of a hydrological model, the estimation of snow resource anomalies and the predictability of runoff through SWE.


Sign in / Sign up

Export Citation Format

Share Document