scholarly journals Greenland ice sheet surface mass balance: evaluating simulations and making projections with regional climate models

2012 ◽  
Vol 6 (3) ◽  
pp. 2059-2113 ◽  
Author(s):  
J. G. L. Rae ◽  
G. Aðalgeirsdóttir ◽  
T. L. Edwards ◽  
X. Fettweis ◽  
J. M. Gregory ◽  
...  

Abstract. Four high-resolution regional climate models (RCMs) have been set up for the area of Greenland, with the aim of providing future projections of Greenland ice sheet surface mass balance (SMB), and its contribution to sea level rise, with greater accuracy than is possible from coarser-resolution general circulation models (GCMs). This is the first time an intercomparison has been carried out of RCM results for Greenland climate and SMB. Output from RCM simulations for the recent past with the four RCMs is evaluated against available observations. The evaluation highlights the importance of using a detailed snow physics scheme, especially regarding the representations of albedo and meltwater refreezing. Simulations with three of the RCMs for the 21st century using SRES scenario A1B from two GCMs produce trends of between −5.5 and −1.1 Gt yr−2 in SMB (equivalent to +0.015 and +0.003 mm sea level equivalent yr−2), with trends of smaller magnitude for scenario E1, in which emissions are mitigated. Results from one of the RCMs whose present-day simulation is most realistic indicate that an annual-mean near-surface air temperature increase over Greenland of ~2 ○C would be required for the mass loss to increase such that it exceeds accumulation, thereby causing the SMB to become negative, which has been suggested as a threshold beyond which the ice-sheet would eventually be eliminated.

2012 ◽  
Vol 6 (6) ◽  
pp. 1275-1294 ◽  
Author(s):  
J. G. L. Rae ◽  
G. Aðalgeirsdóttir ◽  
T. L. Edwards ◽  
X. Fettweis ◽  
J. M. Gregory ◽  
...  

Abstract. Four high-resolution regional climate models (RCMs) have been set up for the area of Greenland, with the aim of providing future projections of Greenland ice sheet surface mass balance (SMB), and its contribution to sea level rise, with greater accuracy than is possible from coarser-resolution general circulation models (GCMs). This is the first time an intercomparison has been carried out of RCM results for Greenland climate and SMB. Output from RCM simulations for the recent past with the four RCMs is evaluated against available observations. The evaluation highlights the importance of using a detailed snow physics scheme, especially regarding the representations of albedo and meltwater refreezing. Simulations with three of the RCMs for the 21st century using SRES scenario A1B from two GCMs produce trends of between −5.5 and −1.1 Gt yr−2 in SMB (equivalent to +0.015 and +0.003 mm sea level equivalent yr−2), with trends of smaller magnitude for scenario E1, in which emissions are mitigated. Results from one of the RCMs whose present-day simulation is most realistic indicate that an annual mean near-surface air temperature increase over Greenland of ~ 2°C would be required for the mass loss to increase such that it exceeds accumulation, thereby causing the SMB to become negative, which has been suggested as a threshold beyond which the ice sheet would eventually be eliminated.


2012 ◽  
Vol 6 (2) ◽  
pp. 255-272 ◽  
Author(s):  
M. M. Helsen ◽  
R. S. W. van de Wal ◽  
M. R. van den Broeke ◽  
W. J. van de Berg ◽  
J. Oerlemans

Abstract. It is notoriously difficult to couple surface mass balance (SMB) results from climate models to the changing geometry of an ice sheet model. This problem is traditionally avoided by using only accumulation from a climate model, and parameterizing the meltwater run-off as a function of temperature, which is often related to surface elevation (Hs). In this study, we propose a new strategy to calculate SMB, to allow a direct adjustment of SMB to a change in ice sheet topography and/or a change in climate forcing. This method is based on elevational gradients in the SMB field as computed by a regional climate model. Separate linear relations are derived for ablation and accumulation, using pairs of Hs and SMB within a minimum search radius. The continuously adjusting SMB forcing is consistent with climate model forcing fields, also for initially non-glaciated areas in the peripheral areas of an ice sheet. When applied to an asynchronous coupled ice sheet – climate model setup, this method circumvents traditional temperature lapse rate assumptions. Here we apply it to the Greenland Ice Sheet (GrIS). Experiments using both steady-state forcing and glacial-interglacial forcing result in realistic ice sheet reconstructions.


2021 ◽  
Author(s):  
Nicolaj Hansen ◽  
Sebastian Bjerregaard Simonsen ◽  
Fredrik Boberg ◽  
Christoph Kittel ◽  
Andrew Orr ◽  
...  

Abstract. Regional climate models compute ice sheet surface mass balance (SMB) over a mask that defines the area covered by glacier ice, but ice masks have not been harmonised between models. Intercomparison studies of modelled SMB therefore use a common ice mask. The SMB in areas outside the common ice mask, which are typically coastal and high precipitation regions, are discarded. Ice mask differences change integrated SMB by between 40.5 to 140.6 Gt yr−1, (1.8 % to 6.0 % of ensemble mean SMB), equivalent to the entire Antarctic mass imbalance. We conclude there is a pressing need for a common ice mask protocol.


2013 ◽  
Vol 7 (2) ◽  
pp. 469-489 ◽  
Author(s):  
X. Fettweis ◽  
B. Franco ◽  
M. Tedesco ◽  
J. H. van Angelen ◽  
J. T. M. Lenaerts ◽  
...  

Abstract. To estimate the sea level rise (SLR) originating from changes in surface mass balance (SMB) of the Greenland ice sheet (GrIS), we present 21st century climate projections obtained with the regional climate model MAR (Modèle Atmosphérique Régional), forced by output of three CMIP5 (Coupled Model Intercomparison Project Phase 5) general circulation models (GCMs). Our results indicate that in a warmer climate, mass gain from increased winter snowfall over the GrIS does not compensate mass loss through increased meltwater run-off in summer. Despite the large spread in the projected near-surface warming, all the MAR projections show similar non-linear increase of GrIS surface melt volume because no change is projected in the general atmospheric circulation over Greenland. By coarsely estimating the GrIS SMB changes from GCM output, we show that the uncertainty from the GCM-based forcing represents about half of the projected SMB changes. In 2100, the CMIP5 ensemble mean projects a GrIS SMB decrease equivalent to a mean SLR of +4 ± 2 cm and +9 ± 4 cm for the RCP (Representative Concentration Pathways) 4.5 and RCP 8.5 scenarios respectively. These estimates do not consider the positive melt–elevation feedback, although sensitivity experiments using perturbed ice sheet topographies consistent with the projected SMB changes demonstrate that this is a significant feedback, and highlight the importance of coupling regional climate models to an ice sheet model. Such a coupling will allow the assessment of future response of both surface processes and ice-dynamic changes to rising temperatures, as well as their mutual feedbacks.


2020 ◽  
Vol 14 (6) ◽  
pp. 1747-1762 ◽  
Author(s):  
Heiko Goelzer ◽  
Brice P. Y. Noël ◽  
Tamsin L. Edwards ◽  
Xavier Fettweis ◽  
Jonathan M. Gregory ◽  
...  

Abstract. Future sea-level change projections with process-based stand-alone ice sheet models are typically driven with surface mass balance (SMB) forcing derived from climate models. In this work we address the problems arising from a mismatch of the modelled ice sheet geometry with the geometry used by the climate model. We present a method for applying SMB forcing from climate models to a wide range of Greenland ice sheet models with varying and temporally evolving geometries. In order to achieve that, we translate a given SMB anomaly field as a function of absolute location to a function of surface elevation for 25 regional drainage basins, which can then be applied to different modelled ice sheet geometries. The key feature of the approach is the non-locality of this remapping process. The method reproduces the original forcing data closely when remapped to the original geometry. When remapped to different modelled geometries it produces a physically meaningful forcing with smooth and continuous SMB anomalies across basin divides. The method considerably reduces non-physical biases that would arise by applying the SMB anomaly derived for the climate model geometry directly to a large range of modelled ice sheet model geometries.


2014 ◽  
Vol 8 (1) ◽  
pp. 181-194 ◽  
Author(s):  
T. L. Edwards ◽  
X. Fettweis ◽  
O. Gagliardini ◽  
F. Gillet-Chaulet ◽  
H. Goelzer ◽  
...  

Abstract. We present a new parameterisation that relates surface mass balance (SMB: the sum of surface accumulation and surface ablation) to changes in surface elevation of the Greenland ice sheet (GrIS) for the MAR (Modèle Atmosphérique Régional: Fettweis, 2007) regional climate model. The motivation is to dynamically adjust SMB as the GrIS evolves, allowing us to force ice sheet models with SMB simulated by MAR while incorporating the SMB–elevation feedback, without the substantial technical challenges of coupling ice sheet and climate models. This also allows us to assess the effect of elevation feedback uncertainty on the GrIS contribution to sea level, using multiple global climate and ice sheet models, without the need for additional, expensive MAR simulations. We estimate this relationship separately below and above the equilibrium line altitude (ELA, separating negative and positive SMB) and for regions north and south of 77° N, from a set of MAR simulations in which we alter the ice sheet surface elevation. These give four "SMB lapse rates", gradients that relate SMB changes to elevation changes. We assess uncertainties within a Bayesian framework, estimating probability distributions for each gradient from which we present best estimates and credibility intervals (CI) that bound 95% of the probability. Below the ELA our gradient estimates are mostly positive, because SMB usually increases with elevation: 0.56 (95% CI: −0.22 to 1.33) kg m−3 a−1 for the north, and 1.91 (1.03 to 2.61) kg m−3 a−1 for the south. Above the ELA, the gradients are much smaller in magnitude: 0.09 (−0.03 to 0.23) kg m−3 a−1 in the north, and 0.07 (−0.07 to 0.59) kg m−3 a−1 in the south, because SMB can either increase or decrease in response to increased elevation. Our statistically founded approach allows us to make probabilistic assessments for the effect of elevation feedback uncertainty on sea level projections (Edwards et al., 2014).


2016 ◽  
Vol 10 (5) ◽  
pp. 1965-1989 ◽  
Author(s):  
Nicole-Jeanne Schlegel ◽  
David N. Wiese ◽  
Eric Y. Larour ◽  
Michael M. Watkins ◽  
Jason E. Box ◽  
...  

Abstract. Quantifying the Greenland Ice Sheet's future contribution to sea level rise is a challenging task that requires accurate estimates of ice sheet sensitivity to climate change. Forward ice sheet models are promising tools for estimating future ice sheet behavior, yet confidence is low because evaluation of historical simulations is challenging due to the scarcity of continental-wide data for model evaluation. Recent advancements in processing of Gravity Recovery and Climate Experiment (GRACE) data using Bayesian-constrained mass concentration ("mascon") functions have led to improvements in spatial resolution and noise reduction of monthly global gravity fields. Specifically, the Jet Propulsion Laboratory's JPL RL05M GRACE mascon solution (GRACE_JPL) offers an opportunity for the assessment of model-based estimates of ice sheet mass balance (MB) at ∼ 300 km spatial scales. Here, we quantify the differences between Greenland monthly observed MB (GRACE_JPL) and that estimated by state-of-the-art, high-resolution models, with respect to GRACE_JPL and model uncertainties. To simulate the years 2003–2012, we force the Ice Sheet System Model (ISSM) with anomalies from three different surface mass balance (SMB) products derived from regional climate models. Resulting MB is compared against GRACE_JPL within individual mascons. Overall, we find agreement in the northeast and southwest where MB is assumed to be primarily controlled by SMB. In the interior, we find a discrepancy in trend, which we presume to be related to millennial-scale dynamic thickening not considered by our model. In the northwest, seasonal amplitudes agree, but modeled mass trends are muted relative to GRACE_JPL. Here, discrepancies are likely controlled by temporal variability in ice discharge and other related processes not represented by our model simulations, i.e., hydrological processes and ice–ocean interaction. In the southeast, GRACE_JPL exhibits larger seasonal amplitude than predicted by the models while simultaneously having more pronounced trends; thus, discrepancies are likely controlled by a combination of missing processes and errors in both the SMB products and ISSM. At the margins, we find evidence of consistent intra-annual variations in regional MB that deviate distinctively from the SMB annual cycle. Ultimately, these monthly-scale variations, likely associated with hydrology or ice–ocean interaction, contribute to steeper negative mass trends observed by GRACE_JPL. Thus, models should consider such processes at relatively high (monthly-to-seasonal) temporal resolutions to achieve accurate estimates of Greenland MB.


2014 ◽  
Vol 60 (220) ◽  
pp. 314-322 ◽  
Author(s):  
Dirk Van As ◽  
Morten Langer Andersen ◽  
Dorthe Petersen ◽  
Xavier Fettweis ◽  
Jan H. Van Angelen ◽  
...  

AbstractWe assess the runoff and surface mass balance (SMB) of the Greenland ice sheet in the Nuuk region (southwest) using output of two regional climate models (RCMs) evaluated by observations. The region encompasses six glaciers that drain into Godthåbsfjord. RCM data (1960–2012) are resampled to a high spatial resolution to include the narrow (relative to the native grid spacing) glacier trunks in the ice mask. Comparing RCM gridded results with automatic weather station (AWS) point measurements reveals that locally models can underestimate ablation and overestimate accumulation by up to tens of per cent. However, comparison with lake discharge indicates that modelled regional runoff totals are more accurate. Model results show that melt and runoff in the Nuuk region have doubled over the past two decades. Regional SMB attained negative values in recent high-melt years. Taking into account frontal ablation of the marine-terminating glaciers, the region lost 10–20 km3 w.e. a–1 in 2010–12. If 2010 melting prevails during the remainder of this century, a low-end estimate of sea-level rise of 5 mm is expected by 2100 from this relatively small section (2.6%) of the ice sheet alone.


2019 ◽  
Author(s):  
Heiko Goelzer ◽  
Brice P. Y. Noel ◽  
Tamsin L. Edwards ◽  
Xavier Fettweis ◽  
Jonathan M. Gregory ◽  
...  

Abstract. Future sea-level change projections with process-based standalone ice sheet models are typically driven with surface mass balance (SMB) forcing derived from climate models. In this work we address the problems arising from a mismatch of the modelled ice sheet geometry with the one used by the climate model. We present a method to apply SMB forcing from climate models to a wide range of Greenland ice sheet models with varying and temporally evolving geometries. In order to achieve that, we translate a given SMB anomaly field as a function of absolute location, to a function of surface elevation for 25 regional drainage basins, which can then be applied to different modelled ice sheet geometries. The key feature of the approach is the non-locality of this remapping process. The method reproduces the original forcing data closely when remapped to the original geometry. When remapped to different modelled geometries it produces a physically meaningful forcing with smooth and continuous SMB anomalies across basin divides. The method considerably reduces non-physical biases that would arise by applying the SMB anomaly derived for the observed geometry directly to a large range of modelled ice sheet model geometries.


Sign in / Sign up

Export Citation Format

Share Document