scholarly journals Gaussian mixture model for extreme wind turbulence estimation

2022 ◽  
Author(s):  
Xiaodong Zhang ◽  
Anand Natarajan

Abstract. Uncertainty quantification is a necessary step in wind turbine design due to the random nature of the environmental loads, through which the uncertainty of structural loads and responses under specific situations can be quantified. Specifically, wind turbulence has a significant impact on the extreme and fatigue design envelope of the wind turbine. The wind parameters (mean and standard deviation of 10-minute wind speed) are usually not independent, and it will lead to biased results for structural reliability or uncertainty quantification assuming the wind parameters are independent. A proper probabilistic model should be established to model the correlation among wind parameters. Compared to univariate distributions, theoretical multivariate distributions are limited and not flexible enough to model the wind parameters from different sites or direction sectors. Copula-based models are used often for correlation description, but existing parametric copulas may not model the correlation among wind parameters well due to limitations of the copula structures. The Gaussian mixture model is widely applied for density estimation and clustering in many domains, but limited studies were conducted in wind energy and few used it for density estimation of wind parameters. In this paper, the Gaussian mixture model is used to model the joint distribution of mean and standard deviation of 10-minute wind speed, which is calculated from 15 years of wind measurement time series data. As a comparison, the Nataf transformation (Gaussian copula) and Gumbel copula are compared with the Gaussian mixture model in terms of the estimated marginal distributions and conditional distributions. The Gaussian mixture model is then adopted to estimate the extreme wind turbulence, which could be taken as an input to design loads used in the ultimate design limit state of turbine structures. The wind turbulence associated with a 50-year return period computed from the Gaussian mixture model is compared with what is utilized in the design of wind turbines as given in the IEC 61400-1.

2018 ◽  
Vol 2018 ◽  
pp. 1-9
Author(s):  
Aidong Xu ◽  
Wenqi Huang ◽  
Peng Li ◽  
Huajun Chen ◽  
Jiaxiao Meng ◽  
...  

Aiming at improving noise reduction effect for mechanical vibration signal, a Gaussian mixture model (SGMM) and a quantum-inspired standard deviation (QSD) are proposed and applied to the denoising method using the thresholding function in wavelet domain. Firstly, the SGMM is presented and utilized as a local distribution to approximate the wavelet coefficients distribution in each subband. Then, within Bayesian framework, the maximum a posteriori (MAP) estimator is employed to derive a thresholding function with conventional standard deviation (CSD) which is calculated by the expectation-maximization (EM) algorithm. However, the CSD has a disadvantage of ignoring the interscale dependency between wavelet coefficients. Considering this limit for the CSD, the quantum theory is adopted to analyze the interscale dependency between coefficients in adjacent subbands, and the QSD for noise-free wavelet coefficients is presented based on quantum mechanics. Next, the QSD is constituted for the CSD in the thresholding function to shrink noisy coefficients. Finally, an application in the mechanical vibration signal processing is used to illustrate the denoising technique. The experimental study shows the SGMM can model the distribution of wavelet coefficients accurately and QSD can depict interscale dependency of wavelet coefficients of true signal quite successfully. Therefore, the denoising method utilizing the SGMM and QSD performs better than others.


2013 ◽  
Vol 380-384 ◽  
pp. 1394-1397
Author(s):  
Hong Hai Liu ◽  
Xiang Hua Hou

When modeling background model by Gaussian mixture model, there exist the defects that parameters can not be updated adaptively. In this paper, we adopt mean-shift algorithm to overcome these defects. Firstly, this paper introduces the initialized parameters, such as variance, mean, and weights and others, when modeling and then the parameters are constantly adjusted in the subsequent calculations. Then the statistical background model based on probability density estimation is put forward and using mean-shift algorithm updates the parameters adaptively. At last, the algorithm of mixture Gaussian background modeling method based on mean-shift is implemented. The experimental results show that the algorithm can effectively update parameters adaptively and the obtained background model is better.


Sign in / Sign up

Export Citation Format

Share Document