scholarly journals EFFECT OF TEMPERATURE AND PH ON PHENOL BIODEGRADATION BY A NEWLY IDENTIFIED SERRATIA SP. AQ5-03

2020 ◽  
Vol 1 (1) ◽  
pp. 28-43
Author(s):  
A. Aisami ◽  
N. A. Yasid ◽  
W. L. W. Johari ◽  
S. A. Ahmad ◽  
M. Y. Shukor

Phenol is mainly used by the industries to produce a variety of chemical products such as resins, textiles, pesticides, plastics and explosive. The wide use of phenol and other phenolic compounds by industries, has resulted in an increased presence of these toxic compounds in the environment as pollutants. Bio-removal of phenol by microorganisms especially bacteria has been demonstrated to be the most effective and economical approach compared to physio-chemical methods. The search for efficient phenol-degraders especially local sources to remediate local phenol pollution is important as indigenous bacteria usually have better survival and resilient to local geographical conditions. In this study, a phenol-degrading microorganism was isolated from local soil and waste water bodies. Identification was carried out using gram staining, 16s rRNA gene sequencing and molecular phylogeny analysis using the Phylip software. The isolates were inoculated in mineral salt media with 0.5 g/L phenol as the sole source of carbon. Phenol degradation was determined using 4-amino antipyrine method. Physical and cultural conditions influencing phenol degradation such as pH and temperature were optimized via one-factor-at-a-time. Through phylogeny analysis, the isolate was identified as Serratia sp. and the sequence was deposited the NCBI Genebank and accession number KT693287 was assigned to the bacteria. The highest degradation was achieved at pH 7.5 (phosphate buffer) and temperature of 30°C. Ammonium sulphate was established to be the best nitrogen source at the concentration of 0.4 g/L and a sodium chloride concentration of 0.15 g/L. Aisami, A. | Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, Selangor, Malaysia

2014 ◽  
Vol 64 (Pt_11) ◽  
pp. 3816-3820 ◽  
Author(s):  
Hyo-Jin Lee ◽  
Geon-Yeong Cho ◽  
Sang-Ho Chung ◽  
Kyung-Sook Whang

A Gram-staining-positive actinobacterium, designated strain 1MR-8T, was isolated from the rhizoplane of ginseng and its taxonomic status was determined using a polyphasic approach. The isolate formed long chains of spores that were straight, cylindrical and smooth-surfaced. Strain 1MR-8T grew at 10–37 °C (optimum 28 °C), whilst no growth was observed at 45 °C. The pH range for growth was 4.0–11.0 (optimum pH 6.0–8.0) and the NaCl range for growth was 0–7 % (w/v) with optimum growth at 1 % (w/v). Strain 1MR-8T had cell-wall peptidoglycans based on ll-diaminopimelic acid. Glucose, mannose and ribose were the whole-cell sugars. The predominant isoprenoid quinones were MK-9 (H4), MK-9 (H6) and MK-9 (H8) and the major fatty acids were anteiso-C15 : 0, iso-C15 : 0, anteiso-C17 : 0 and iso-C16 : 0. 16S rRNA gene sequencing studies showed that the novel strain was closely related to the type strains of Streptomyces caeruleatus GIMN4T, Streptomyces curacoi NRRL B-2901T, Streptomyces capoamus JCM 4734T and Streptomyces coeruleorubidus NBRC 12761T with similarities of 98.8 %. However, DNA–DNA relatedness, as well as physiological and biochemical analyses, showed that strain 1MR-8T could be differentiated from its closest phylogenetic relatives. It is proposed that this strain should be classified as a representative of a novel species of the genus Streptomyces , with the suggested name Streptomyces panaciradicis sp. nov. The type strain is 1MR-8T ( = KACC 17632T = NBRC 109811T).


2017 ◽  
Vol 77 (2) ◽  
pp. 504-510 ◽  
Author(s):  
Tao Deng ◽  
Hongyu Wang ◽  
Kai Yang

Abstract Phenol is a toxic pollutant in many kinds of hypersaline industrial effluents that should be treated properly before discharged into water bodies. In this work, a halophilic strain which could utilize phenol as the sole source of carbon and energy was isolated. Based on 16S rRNA results, it was identified as a member of Citrobacter. The phenol biodegradation ability and cell growth of the strain was evaluated with the variation of initial phenol concentration and salinity. The effect of temperature and pH on phenol removal was also investigated. The results showed that the strain was capable of withstanding high phenol (up to 1,100 mg L−1) environment with varying salinity conditions (0–10% of NaCl). The optimal initial phenol concentration was 400 mg L−1, at which the average removal rates of phenol peaked at 10.8 mg L−1 h−1. The higher initial concentration of phenol could inhibit the microbial metabolism. The optimal temperature, pH, and salinity were 35 °C, 6.0, and 0%, respectively. Under these conditions, 400 mg L−1 of phenol could be completely degraded within 20 h. The high removal rates of phenol by the strain might provide an alternative for treating phenolic wastewaters containing high salinity.


2015 ◽  
Vol 65 (Pt_8) ◽  
pp. 2472-2478 ◽  
Author(s):  
Xueqian Lei ◽  
Huajun Zhang ◽  
Yao Chen ◽  
Yi Li ◽  
Zhangran Chen ◽  
...  

A Gram-staining-negative, orange-pigmented, aerobic bacterial strain, designated KA37T, was isolated from a mangrove sediment sample collected from Yunxiao mangrove National Nature Reserve, Fujian Province, China. Growth was observed at 4–37 °C, 0–3 % (w/v) NaCl and pH 5–10. Mg2+ ions were required for growth. Phylogenetic analysis based on 16S rRNA gene sequencing revealed that the isolate was a member of the genus Erythrobacter, which belongs to the family Erythrobacteraceae. Strain KA37T was most closely related to Erythrobacter gangjinensis KCTC 22330T (96.9 % sequence similarity), followed by Erythrobacter marinus KCTC 23554T (96.8 %); similarity to other members of the genus was below 96.6 %. The major fatty acids were C17 : 1ω6c, summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c) and summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c). Strain KA37T did not produce bacteriochlorophyll a. The predominant respiratory quinone was ubiquinone 10 (Q-10). The polar lipids of strain KA37T were sphingoglycolipid, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, five unknown lipids and one unidentified phospholipid. According to its morphology, physiology, fatty acid composition and 16S rRNA sequence, the novel strain most appropriately belongs to the genus Erythrobacter, but can be distinguished readily from species of the genus Erythrobacter with validly published names. The name Erythrobacter luteus sp. nov. is proposed, with strain KA37T ( = MCCC 1F01227T = KCTC 42179T) as the type strain.


2019 ◽  
Vol 31 (2) ◽  
pp. 155-163 ◽  
Author(s):  
Kelsey E. Lawrence ◽  
Khiem C. Lam ◽  
Andrey Morgun ◽  
Natalia Shulzhenko ◽  
Christiane V. Löhr

Knowledge of changes in the composition of microbial communities (microbiota) in tissues after death, over time, is critical to correctly interpret results of microbiologic testing from postmortem examinations. Limited information is available about postmortem changes of the microbiota and the associated microbial genes (microbiome) of internal organs in any species. We examined the effect of time and ambient temperature on the postmortem microbiome (thanatomicrobiome) of tissues typically sampled for microbiologic testing during autopsies. Twenty rabbits were euthanized and their bodies stored at 4°C or 20°C for 6 or 48 h. Ileum, cecum, kidney, and lung tissue were sampled. Bacterial DNA abundance was determined by RT-qPCR. Microbiome diversity was determined by 16S rRNA gene sequencing. By relative abundance of the microbiome composition, intestinal tissues were clearly separated from lungs and kidneys, which were similar to each other, over all times and temperatures. Only cecal thanatomicrobiomes had consistently high concentrations and consistent composition in all conditions. In lungs and kidneys, but not intestine, proteobacteria were highly abundant at specific times and temperatures. Thanatomicrobiome variation was not explained by minor subclinical lesions identified upon microscopic examination of tissues. Bacterial communities typically found in the intestine were not identified at extra-intestinal sites in the first 48 h at 4°C and only in small amounts at 20°C. However, changes in tissue-specific microbiomes during the postmortem interval should be considered when interpreting results of microbiologic testing.


2015 ◽  
Vol 65 (Pt_8) ◽  
pp. 2666-2670 ◽  
Author(s):  
Xueqian Lei ◽  
Yi Li ◽  
Guanghua Wang ◽  
Yao Chen ◽  
Qiliang Lai ◽  
...  

A Gram-staining-negative, orange-pigmented, non-motile, aerobic bacterial strain, designated GYP20T, was isolated from a culture of the alga Picochlorum sp., a promising feedstock for biodiesel production, which was isolated from the India Ocean. Growth was observed at temperatures from 20 to 37 °C, salinities from 0 to 3  % and pH from 5 to 9.Mg 2+ and Ca2+ ions were required for growth. Phylogenetic analysis based on 16S rRNA gene sequencing revealed that the strain was a member of the genus Phaeodactylibacter, which belongs to the family Saprospiraceae. Strain GYP20T was most closely related to Phaeodactylibacter xiamenensis KD52T (95.5  % sequence similarity). The major fatty acids were iso-C15 : 1 G, iso-C15 : 0, iso-C17 : 0 3-OH and summed feature 3. The predominant respiratory quinone was menaquinone-7 (MK-7). The polar lipids of strain GYP20T were found to consist of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, four unidentified glycolipids, two unidentified phospholipids and three unidentified aminolipids. According to its morphology, physiology, fatty acid composition and 16S rRNA sequence data, the novel strain most appropriately belongs to the genus Phaeodactylibacter, but can readily be distinguished from Phaeodactylibacter xiamenensis GYP20T. The name Phaeodactylibacter luteus sp. nov. is proposed with the type strain GYP20T ( = MCCC 1F01222T = KCTC 42180T).


2020 ◽  
Vol 41 (6) ◽  
pp. 1560-1569 ◽  
Author(s):  
K. Subramaniam ◽  
◽  
N.A. Shaharuddin ◽  
T.A. Tengku-Mazuki ◽  
A. Zulkharnain ◽  
...  

Aim: Effective bioremediation requires optimisation of conditions under which the process takes place. In this study, an Antarctic soil bacterium, Arthrobacter sp. strain AQ5-15, was evaluated for phenol biodegradation under statistically optimised conditions. Methodology: The composition of degradation media and the culture conditions for this study were determined according to the experimental requirements obtained from Plackett-Burman factorial design (PB) and Box-Wilson Central Composite Design (CCD), respectively. Phenol degradation was monitored by 4-aminoantipyrine colorimetric assay and bacterial growth was quantified by measuring optical density (OD600 nm) at 72 hr. Results: A preliminary screening experiment using the Plackett-Burman design indicated that all the factors screened (ammonium sulphate concentration, sodium chloride concentration, pH and temperature) had significant influence on degradation performance. Response Surface Methodology was then utilised to further optimise the phenol-degrading process using Central Composite Design. The maximum percentage of phenol degradation achieved with CCD was 99.42%, under medium conditions of 0.15 g l-1 (NH4)2SO4, 0.13 g l-1 NaCl, pH 7.25 and incubation at 15°C for 72 hr. The strain could degrade phenol when exposed to an initial concentration of up to 1.5 g l-1 under these optimised conditions. Interpretation: The tolerance and degradation characteristics of strain AQ5-15 suggest that it has potential application in bioremediation of polluted sites and in the treatment of relatively cool water bodies contaminated with phenol.


2020 ◽  
Vol 32 (1) ◽  
pp. 47-55
Author(s):  
Bożena Szewczyk-Taranek ◽  
Anita Jaglarz ◽  
Piotr Pałka ◽  
Paulina Supel ◽  
Paweł Kaszycki ◽  
...  

AbstractThis study focused on the identification and elimination of endophytic bacterial contaminations during in vitro propagation of European bladdernut (Staphylea pinnata). Axillary shoots were propagated on Murashige and Skoog medium with 20 mg ∙ dm−3 FeEDDHA, 5 μM BA and 0.5 μM NAA at 20/18°C (day/night) and a 16-h photoperiod. Clouding by endophytic bacterial colonies was observed where shoots contacted the media. Bacteria were isolated and separated by repeated streaking as two strains. Gram staining revealed that both strains were Gram-negative. The colonies were very precisely identified as Acinetobacter johnsonii, strain ATCC 17909, and Methylobacterium rhodesianum, strain DSM 5687, using VITEK®2—a rapid bacterial identification system—and the 16S rRNA gene sequencing method. The agar disc-diffusion test proved that both bacterial strains were susceptible to 13 antibiotics (out of 25 tested), derived from the groups of fluoroquinolones, aminoglycosides and tetracyclines. Doxycycline or gentamicin (100–300 mg ∙ dm−3) was added to the S. pinnata shoot propagation medium to eliminate bacteria. Gentamicin 100 mg ∙ dm−3 showed the best effect, inhibiting the growth of endogenous bacteria (63%) when applied in the medium for 4 weeks. After the following transfer to media without antibiotics, shoots developed axillary buds and bacterial colonies were not observed.


2019 ◽  
Vol 9 (3) ◽  
pp. 125-129
Author(s):  
Girish R Nair ◽  
Suresh S.S. Raja

α-amylases (EC3.2.1.1) are glycoside hydrolases that breakdown complex starch and maltodextrins into glucose and maltose by acting upon 1,4-glycosidiclinkages. Several amylases have been isolated and purified from members of Bacillus community, which find extensive application in starch processing, textile and pharmaceutical industry. Keeping this in mind we isolated α-amylase producing gram positive bacterium from soils collected from mountain climatic zone of India and identified it as Brevibacillus laterosporus. We further studied the effect of temperature and pH on the amylase activity of this strain and found a very stable activity at alkaline pH of 10 and temperature of 45 ºC. To our knowledge this a first report on characterization and evolutionary analysis of alkaline α-amylase producing Brevibacillus laterosporus isolated from unexplored sites of mountain climatic zone of India. Keywords: Climatic zone, Brevibacillus, Amylase, 16S rRNA gene sequencing, Phylogenetic analysis


Sign in / Sign up

Export Citation Format

Share Document