scholarly journals A COMPREHENSIVE REVIEW OF PHOTOVOLTAIC DEVICES BASED ON PEROVSKITES

2020 ◽  
Vol 1 (1) ◽  
pp. 26-52
Author(s):  
E. O. Iyasele

Perovskite solar cells (PSCs) though in its development stage, has been of interest to Scientists receiving considerable attention in recent years as a promising material capable of developing high performance photovoltaic devices at low cost. Owing to their solution processability, broad spectrum solar absorption, low non-radiative recombination losses, etc., PSCs provide numerous advantages over most thin film absorber materials. Due to the substantial improvement of Power Conversion Efficiency (PCE) of these materials, photovoltaic efficiency has reached prestigious position (approx. 20.1 %) within the last 5 years. In this review article, we discuss the current state of the Art for photovoltaic devices based on Perovskites, highlighting the underlying phenomenon, synthesis, challenges, comparison to other technologies and future outlook. We emphasized the importance of Perovskite film formation and qualities in achieving highly efficient photovoltaic devices. The flexibility and simplicity of Perovskite fabrication methods allows the use of mesoporous and planar device architectures. A variety of processing techniques are currently employed to form the highest quality CH3NH3PbX3 films resulting to high performance PSC devices which include stoichiometry, thermal annealing, solvent engineering, additives and environmental control. In this review, we outlined and discussed the challenges of PSCs including its stability issues, hysteresis effects, and ion migration effects. Possible ways overcoming these challenges and improvement on the stability of PSCs so far were also addressed.    Iyasele, E. O. | Mechanical Engineering Department, Michael Okpara University of Agriculture, Umudike, Abia State, Nigeria

2015 ◽  
Vol 3 (17) ◽  
pp. 9032-9050 ◽  
Author(s):  
Tze-Bin Song ◽  
Qi Chen ◽  
Huanping Zhou ◽  
Chengyang Jiang ◽  
Hsin-Hua Wang ◽  
...  

Perovskite solar cells have received considerable attention in recent years as a promising material capable of developing high performance photovoltaic devices at a low cost.


2015 ◽  
Vol 3 (36) ◽  
pp. 18329-18344 ◽  
Author(s):  
T. Swetha ◽  
Surya Prakash Singh

The hole transporting materials in perovskite solar cells have received significant attention in recent years as a promising materials capable of developing high performance photovoltaic devices at low cost.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1489
Author(s):  
Bhaskar Parida ◽  
Saemon Yoon ◽  
Dong-Won Kang

Materials and processing of transparent electrodes (TEs) are key factors to creating high-performance translucent perovskite solar cells. To date, sputtered indium tin oxide (ITO) has been a general option for a rear TE of translucent solar cells. However, it requires a rather high cost due to vacuum process and also typically causes plasma damage to the underlying layer. Therefore, we introduced TE based on ITO nanoparticles (ITO-NPs) by solution processing in ambient air without any heat treatment. As it reveals insufficient conductivity, Ag nanowires (Ag-NWs) are additionally coated. The ITO-NPs/Ag-NW (0D/1D) bilayer TE exhibits a better figure of merit than sputtered ITO. After constructing CsPbBr3 perovskite solar cells, the device with 0D/1D TE offers similar average visible transmission with the cells with sputtered ITO. More interestingly, the power conversion efficiency of 0D/1D TE device was 5.64%, which outperforms the cell (4.14%) made with sputtered-ITO. These impressive findings could open up a new pathway for the development of low-cost, translucent solar cells with quick processing under ambient air at room temperature.


Author(s):  
Wenyuan Zhang ◽  
Lang He ◽  
Yuanchao Li ◽  
Dongyan Tang ◽  
Xin Li ◽  
...  

All-air-processed perovskite solar cells (PSCs) have attracted increasing attention due to low cost and simplified manufacturing processes. At present, to fabricate efficient and stable PSCs in the air is expected....


2021 ◽  
pp. 2002733
Author(s):  
Xu Zhang ◽  
Tinghuan Yang ◽  
Xiaodong Ren ◽  
Lu Zhang ◽  
Kui Zhao ◽  
...  

RSC Advances ◽  
2021 ◽  
Vol 11 (24) ◽  
pp. 14534-14541
Author(s):  
M. S. Chowdhury ◽  
Kazi Sajedur Rahman ◽  
Vidhya Selvanathan ◽  
A. K. Mahmud Hasan ◽  
M. S. Jamal ◽  
...  

Organic–inorganic perovskite solar cells (PSCs) have recently emerged as a potential candidate for large-scale and low-cost photovoltaic devices.


2021 ◽  
Vol 119 (13) ◽  
pp. 133904
Author(s):  
Binbin Wang ◽  
Lingwei Xue ◽  
Shiqi Wang ◽  
Yao Li ◽  
Lele Zang ◽  
...  

2019 ◽  
Vol 7 (36) ◽  
pp. 20494-20518 ◽  
Author(s):  
Bo Li ◽  
Lin Fu ◽  
Shuang Li ◽  
Hui Li ◽  
Lu Pan ◽  
...  

High-efficiency and low-cost perovskite solar cells (PSCs) are desirable candidates for addressing the scalability challenge of renewable solar energy.


Nanomaterials ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1324
Author(s):  
Wentao Zhang ◽  
Zeyulin Zhang ◽  
Qubo Jiang ◽  
Ziming Wei ◽  
Yuting Zhang ◽  
...  

The inorganic perovskite has a better stability than the hybrid halide perovskite, and at the same time it has the potential to achieve an excellent photoelectric performance as the organic-inorganic hybrid halide perovskite. Thus, the pursuit of a low-cost and high-performance inorganic perovskite solar cell (PSC) is becoming the research hot point in the research field of perovskite devices. In setting out to build vacuum-free and carbon-based all-inorganic PSCs with the traits of simple fabrication and low cost, we propose the ones with a simplified vertical structure of FTO/CsPbIBr2/carbon upon interfacial modification with PEI species. In this structure, both the electron-transporting-layer and hole-transporting-layer are abandoned, and the noble metal is also replaced by the carbon paste. At the same time, FTO is modified by PEI, which brings dipoles to decrease the work function of FTO. Through our measurements, the carrier recombination has been partially suppressed, and the performance of champion PSCs has far exceeded the control devices without PEI modification, which yields a power conversion efficiency of 4.9% with an open circuit voltage of 0.9 V and a fill factor of 50.4%. Our work contributes significantly to give an available method to explore charge-transporting-layer-free, low-cost, and high-performance PSCs.


Sign in / Sign up

Export Citation Format

Share Document