Development and Validation of Head-space Gas Chromatographic Method in Tandem with Flame ionized detection for the determination of Residual solvents in Simeprevir API Synthesis

Author(s):  
C. Hazarathaiah Yadav ◽  
A. Malli Babu

Residual solvent testing is an integral part of reference material certification. A gas chromatography/flame ionization detector/headspace method has been developed and validated to detect and quantitate commonly used residual solvents in our production processes: Methanol, Tetrahydrofuran, Toluene, Dichloromethane and Dichloroethane in Simeprevir API. A simple and selective HS-GC method is described for the determination & quantification of Residual Solvents in Simeprevir API. Chromatographic separation was achieved on USP G43 equivalent capillary column Thermo Scientific™ Trace GOLD™ TG-624 SilMS, 30m × 0.32mm × 1.8µm column (P/N 26059-3390) using nitrogen as carrier gas by using different temperature gradient of FID Detectors. Linearity was observed in the range 40-120% of standard concentrations for Methanol, Tetrahydrofuran, Toluene, Dichloromethane and Dichloroethane (r2>0.999) for the amount of solvent estimated by the proposed methods was in good agreement. The proposed methods were validated. The accuracy of the methods was assessed by recovery studies at three different levels. Recovery experiments indicated the absence of interference from commonly encountered diluent and API. The method was found to be precise as indicated by the repeatability analysis, showing %RSD less than 10 for Methanol, Tetrahydrofuran, Toluene, Dichloromethane and Dichloroethane. All statistical data proves validity of the methods and can be used for routine analysis of pharmaceutical active ingredients for estimation of Residual Solvents of Methanol, Tetrahydrofuran, Toluene, Dichloromethane and Dichloroethane in Simeprevir. Baseline separation of all five solvents and Simeprevir API is achieved within 20.5 minutes of analysis time. Method validation comprised the following parameters: limit of detection (LOD), limit of quantitation (LOQ), linearity and range, accuracy, precision (repeatability and intermediate precision), system suitability, specificity, and robustness. Linearity and LOQ (ppm) are listed for each solvent in manuscript. The present method was proven to be robust and accurate for quantitative analysis of residual solvent in neat materials.

Author(s):  
Sandip A Telavane ◽  
Seema Kothari ◽  
Manohar V. Lokhande

Validation is important technique for detection, progress and estimation of drugs for pharmaceutical analysis. Aim of this article was to check the progress and validation of the method employed for the Residual Solvents in Bisoprolol Fumarate by Gas Chromatographic technique. The objective of this protocol is to validate a GC method of analysis for detection and Quantification of Residual Solvents Methanol, Acetone and Methylene dichloride in Bisoprolol Fumarate. In the pharmaceutical industry, validation policy is more important for documented of validation, types of validation and validation policy. The method was developed accurately and validation parameters are explained. Chromatographic condition was GC- 2014, gas chromatograph equipped with FID detector, column: 30 m x 0.32 mm ID x 1.8 µm DB - 624 capillary column or equivalent and column temperature was 45°C (hold 7 minutes) to 250°C @ 40°C/minutes, hold at 250°C for 3 minutes. The parameters such as Accuracy, Specificity, Precision, Linearity and Range, Limit of detection (LOD), Limit of quantitation (LOQ), ruggedness, robustness and system suitability testing with residual solvent such as Methanol, Acetone and methylene dichloride. All validation parameters are used in the routine and stability analysis.


Author(s):  
Sanapala Srinivasa Rao ◽  
A. Vijayalakshmi

Residual solvents in Pharmaceuticals are termed as organic volatile impurities. These are the chemicals that are used in the manufacture of drug substance or excipients or use in the preparation of final formulation. Most of the available methods use liquid chromatography which could be expensive and time consuming. Hence, an analytical methodology was developed for the quantification of residual solvents in Glipizide using a headspace gas chromatography (HSGC) with the help of flame ionization detector (FID). Methanol, acetone and dimethyl formamide as residual solvents were determined in Glipizide. Analysis was performed by headspace GC/FID method on Auto system- HS40. Nitrogen was used as a carrier gas and the separation of residual solvents was achieved by DB-Wax 0.25mm, 0.3mcm column. The thermostat temperature was 115 °C for 40 minutes for each vial. % RSD for nine injections obtained are in acceptance criteria. The correlation coefficient R2 obtained greater than 0.99. The method parameters were validated includes specificity, limit of detection and quantification, accuracy, linearity, precision, and robustness. According to the International Conference on Harmonization (ICH) guidelines, a new simple, specific, accurate and precise method was developed and validated.


2018 ◽  
Vol 68 (2) ◽  
pp. 171-183
Author(s):  
Béla Kovács ◽  
Lajos Kristóf Kántor ◽  
Mircea Dumitru Croitoru ◽  
Éva Katalin Kelemen ◽  
Mona Obreja ◽  
...  

Abstract A reverse-phase HPLC (RP-HPLC) method was developed for strontium ranelate using a full factorial, screening experimental design. The analytical procedure was validated according to international guidelines for linearity, selectivity, sensitivity, accuracy and precision. A separate experimental design was used to demonstrate the robustness of the method. Strontium ranelate was eluted at 4.4 minutes and showed no interference with the excipients used in the formulation, at 321 nm. The method is linear in the range of 20–320 μg mL−1 (R2 = 0.99998). Recovery, tested in the range of 40–120 μg mL−1, was found to be 96.1–102.1 %. Intra-day and intermediate precision RSDs ranged from 1.0–1.4 and 1.2–1.4 %, resp. The limit of detection and limit of quantitation were 0.06 and 0.20 μg mL−1, resp. The proposed technique is fast, cost-effective, reliable and reproducible, and is proposed for the routine analysis of strontium ranelate.


2021 ◽  
Vol 37 (2) ◽  
pp. 348-353
Author(s):  
Mohan bhatale ◽  
Neelakandan kaliyaperumal ◽  
Gopalakrishnan Mannathusamy ◽  
Gurunathan ramalingam

A simple, selective, precise and accurate Gas chromatographic method for determination of Triethyl orthoformate content (Genotoxic impurity) in 5-MIA is reported. The GC method development and validation as per the International Council for Harmonisation (ICH) guidelines Q2(R1). The effective chromatographic separations were achieved on DB-624, 60 m × 0.53 mm ID, with film thickness of 3.0 μm (Fused silica capillary column), Capillary injector temperature of 150°C, and Nitrogen Carrier gas. This method is unique as there is no UV response; hence GC Method was developed for Triethyl orthoformate. The elution was accomplished with the flow rate of 5.0 mL/min and Split Flow of 10 mL/minute. Detection was performed with FID detector (temp. 260°C) and with column oven temperature program. Methods range from limit of quantitation (LOQ) to 150% level with respect to specification concentration limit of impurity is linear and correlation coefficient of impurity is > 0.99. The linearity of Triethyl orthoformate covered from LOQ to 113 ppm (ie. LOQ to 150% of specification limit) and LOQ to 19 ppm wrt standard concentration. The limit of detection (LOD)values were observed were 2.5 ppm and limit of quantitation (LOQ) were 7.7 ppm, respectively. The parameters selected for the method validated were from international conference on harmonization guidelines, Indian pharmacopeia, USP. The percentage recovery from LOQ, 50% ,100% to 150% level of content were 87.70%, 98.60%, 102.25 and 96.59% respectively. The %RSD values were for LOQ to 150% were from 1.64%, 0.89%, 1.78 % and 1.49%. The range was covered from LOQ to 150% of standard concentration. The results of validation parameters were found in the acceptance range. Standard and sample were stable up to 30 h at when stored at room temperature. Also it was quite robust for the small change in method parameter like, change in column oven temperature(± 5 degree). Hence from the above parameter it was concluded that the GC method with FID detector is selective, precise, linear, and robust for simultaneous estimation of Triethyl orthoformate in Drug Substances.


Pharmacia ◽  
2021 ◽  
Vol 68 (1) ◽  
pp. 53-59
Author(s):  
Оlena Golembiovska ◽  
Oleksii Voskoboinik ◽  
Galina Berest ◽  
Sergiy Kovalenko ◽  
Liliya Logoyda

Aim. The aim of study was to develop and validate a simple, precise and accurate method using gas chromatography for analysis of residual solvents – acetone and 2-propanol – in quinabut API. Materials and methods. All experiments were performed on a gas chromatographic system equipped with FID detector (Shimadzu GC System) using the DB-624 (30 m × 0.32 mm ID, 3.0 μm film sickness) column as stationary phase. Nitrogen was used as carrier gas with flow rate 7.5 mL/ min. Split ratio was 1:5, injector temperature was 140 °C, detector temperature was 250 °C, oven temperature was programmed from 40 °C (2 min) to 50 °C at 1 °C/min and then increased at a rate of 15 °C/min up to 215 °C; and maintained for 2 min. All solutions were prepared using water as diluent. Results. This proposed method is assessed for separation of residual solvent from quinabut with quantification. The obtained results are compared with the corresponding specified limits of ICH standard guidelines. The method validation was done by evaluating specificity, limit of detection (LOD) and limit of quantitation (LOQ), linearity, accuracy, repeatability, ruggedness, system suitability and method precision of residual solvents as indicated in the ICH harmonized tripartite guideline. The separation between acetone and 2-propanol peaks is 2.07. Hence method was found to be specific. The linear relationship evaluated across range of 15 to 180% for acetone and 2-propanol of ICH specified limit of residual solvents. The graphs of theoretical concentration versus obtained concentration are linear and the regression coefficients ‘R’ for residual solvents were more than 0.9968. The values of LOD and LOQ were much less than the lower limit of the concentration range and cannot affect the accuracy of the test. The technique was characterized by high intra-laboratory accuracy at concentrations close to the nominal acetone and 2-propanol concentration. All solutions were stable in water for at least 1 hour when stored at room temperature. Conclusion. A simple, specific, accurate, precise and rugged gas chromatography method was developed and validated for the quantification of residual solvents present in quinabut API through an understanding of the synthetic process, nature of solvents and nature of stationary phases of columns. The residual solvents acetone and 2-propanol were determined.


Author(s):  
Mannem Durga Babu ◽  
Medikondu Kishore ◽  
K. Surendra Babu

To provide quality control over the manufacture of any API, it is essential to develop highly selective analytical methods. Gas chromatography with headspace (HSGC) is widely used for the determination of residual impurities and solvents in API’s. In the current article we are reporting the development and validation of a rapid and specific Head space gas chromatographic (HSGC) method for the determination of methyl bromide in Itraconazole API. The developed method was validated in terms of specificity, linearity, precision, accuracy, limit of detection (LOD) and limit of quantitation (LOQ). The developed method was utilized for the investigation of methyl bromide content in bulk drug.


2017 ◽  
Vol 68 (4) ◽  
pp. 666-670 ◽  
Author(s):  
Mirela Mihon ◽  
Catalin Stelian Tuta ◽  
Alina Catrinel Ion ◽  
Dana Niculae ◽  
Vasile Lavric

The aim of this work was the development and validation of a fast analytical method to determine the residual solvents content in radiopharmaceuticals such as: 18F-Fluorodeoxyglucose (18F-FDG), 18F-Fluoroestradiol (18F-FES), 18F-Fluorothymidine (18F-FLT),18F-Fluoromisonidazole (18F-FMISO). Radiopharmaceuticals are radioactive preparations for medical purposes used in nuclear medicine as tracers in diagnostic imaging and treatment of certain diseases. Positron Emission Tomography (PET) is a medical imaging technique that consists in introducing into the body of a small amount of a biologically active chemical compound labelled with a short lived positron-emitting radioisotope (18F, 11C, 68Ga). Residual solvents are critical impurities in radiopharmaceuticals that can affect labelling, stability and physicochemical properties of drugs. Therefore, the determination of these solvents is essential for quality control of radiopharmaceuticals. Validation of the control method for residual solvents by gas chromatography is referred by the European Pharmacopoeia using a special injection technique (head space). The parameters of the method, which comply with International Conference on Harmonization guidelines, are: accuracy, precision, linearity, limit of detection, limit of quantification and robustness. The proposed method (direct gas chromatography injection) proved to be linear, precise, accurate and robust. Good linearity was achieved for all the solvents and correlation coefficients (R2) for each residual solvent were found more than 0.99.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1656
Author(s):  
Nataliya E. Kuz’mina ◽  
Sergey V. Moiseev ◽  
Mikhail D. Khorolskiy ◽  
Anna I. Lutceva

The authors developed a 1H qNMR test procedure for identification and quantification of impurity A present in gabapentin active pharmaceutical ingredient (API) and gabapentin products. The validation studies helped to determine the limit of quantitation and assess linearity, accuracy, repeatability, intermediate precision, specificity, and robustness of the procedure. Spike-and-recovery assays were used to calculate standard deviations, coefficients of variation, confidence intervals, bias, Fisher’s F test, and Student’s t-test for assay results. The obtained statistical values satisfy the acceptance criteria for the validation parameters. The authors compared the results of impurity A quantification in gabapentin APIs and capsules by using the 1H qNMR and HPLC test methods.


Author(s):  
Jaspreet Kaur ◽  
Daljit Kaur ◽  
Sukhmeet Singh

Objective: A simple, accurate, and selective ultraviolet-spectrophotometric method has been developed for the estimation of febuxostat in the bulk and pharmaceutical dosage forms.Method: The method was developed and validated according to International Conference on Harmonization (ICH Q2 R1) guidelines. The developed method was validated statistically with respect to linearity, range, precision, accuracy, ruggedness, limit of detection (LOD), limit of quantitation (LOQ), and recovery. Specificity of the method was demonstrated by applying different stressed conditions to drug samples such as acid hydrolysis, alkaline hydrolysis, oxidative, photolytic, and thermal degradation.Results: The study was conducted using phosphate buffer pH 6.8 and λmax was found to be 312 nm. Standard plot having a concentration range of 1–10 μg/ml showed a good linear relationship with R2=0.999. The LOD and LOQ were found to be 0.118 μg/ml and 0.595 μg/ml, respectively. Recovery and percentage relative standard deviations were found to be 100.157±0.332% and <2%, respectively.Conclusion: Proposed method was successfully applicable to the pharmaceutical formulations containing febuxostat. Thus, the developed method is found to be simple, sensitive, accurate, precise, reproducible, and economical for the determination of febuxostat in pharmaceutical dosage forms.


2011 ◽  
Vol 47 (2) ◽  
pp. 379-384 ◽  
Author(s):  
Saurabh Pandey ◽  
Preeti Pandey ◽  
Raj Kumar ◽  
Narendra Pal Singh

Residual solvents in pharmaceutical samples are monitored using gas chromatography with head space. Based on good manufacturing practices, measuring residual solvents is mandatory for the release testing of all active pharmaceutical ingredients (API). The analysis of residual organic solvents (methanol, acetone, cyclohexane, dichloromethane, toluene) in Omeprazole, an active pharmaceutical ingredient was investigated. Omeprazole is a potent reversible inhibitor of the gastric proton pump H+/K+-ATPase. The Head space gas chromatography (HSGC) method described in this investigation utilized a SPB TM-624, Supelco, 30 m long x 0.25 mm internal diameter, 1.4µm-thick column. Since Omeprazole is a thermally labile compound, the selection of the proper injector temperature is critical to the success of the analysis. The injector temperature was set at 170ºC to prevent degradation. The initial oven temperature was set at 40ºC for 12 min and programmed at a rate of 10ºC min-1 to a final temperature of 220ºC for 5 min. Nitrogen was used as a carrier gas. The sample solvent selected was N,N-dimethylacetamide. The method was validated to be specific, linear, precise, sensitive, rugged and showed excellent recovery.


Sign in / Sign up

Export Citation Format

Share Document