Functionalization of Gold Nanoparticles with Monosaccharide Mannose

Author(s):  
Sambit Dash ◽  
Pragna Rao ◽  
Ullas Kamath ◽  
Aparna R Pai ◽  
Prasanna Kumar Reddy Gayam ◽  
...  

Gold nanoparticles have found a wide range of application in biomedical sciences. Unique properties of these metal nanoparticles include surface plasmon resonance and size dependent colour change. Various molecules have been functionalized on the gold nanoparticles surface but carbohydrates have garnered attention due to their properties and their role in living systems. However certain challenges make carbohydrate-gold nanoparticles association difficult to obtain and stabilize. This study was carried out to chemically remodel gold nanoparticles by adding a monosaccharide mannose to its surface. A modified phase transfer method was used to synthesize gold nanoparticles. The surface of the nanoparticles was fixed with cyanuric chloride to serve as a linker. Mannose was then linked to the linker molecule. All three stages of the process, gold nanoparticles, and gold nanoparticles with linker and gold nanoparticles with the carbohydrate were analyzed for size and stability. Zeta potential and UV-vis data exhibited stable gold nanoparticles dispersion, successful binding of linker molecule as well as the carbohydrate. This study shows a simple, cost-effective and robust method of glycomodification of gold nanoparticles surface which can further find use in wide ranging applications.

2019 ◽  
Author(s):  
Claudia Contini ◽  
James W. Hindley ◽  
Tom Macdonald ◽  
Joseph Barritt ◽  
Oscar Ces ◽  
...  

<p><b>The rapid development of nanomaterials has led to an increase in the number and variety of engineered nanomaterials (ENMs) in the environment. Gold nanoparticles (AuNPs) are an example of a commonly studied ENM whose highly tailorable properties have generated significant interest through a wide range of research fields. In the present work, we report the first qualitative as well as quantitative experimental characterisation of the AuNP-membrane interaction. We investigate the interactions between citrate-stabilised AuNPs (diameters 5, 10, 25, 35, 50, 60 nm) and large unilamellar vesicles (LUVs) acting as a model membrane system. LUVs were prepared in two different formulations using 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC) and 1,2-dileoyl-sn-glycero-3-phosphocholine (DOPC). Our results show that the interaction between AuNPs and LUVs is size dependent; in particular, we reveal the existence of two AuNP’s critical diameters which determine the fate of AuNPs in contact with a lipid membrane. The results provide a new understanding of the size dependent interaction between AuNPs and lipid bilayers of direct relevance to nanotoxicology and to the design of NP vectors.</b></p>


2013 ◽  
Vol 66 (4) ◽  
pp. 485 ◽  
Author(s):  
Lan He ◽  
Yanfang Luo ◽  
Wenting Zhi ◽  
Yuangen Wu ◽  
Pei Zhou

This paper proposes a sensing strategy which employs an aptamer, unmodified gold nanoparticles (AuNP), and hexadecyltrimethylammonium bromide (CTAB) to detect tetracycline (TET) in raw milk. The method is based on the colorimetric assay of aggregating AuNP. In the absence of TET, the CTAB and aptamer form a complex which allows the aggregation of AuNP. In the presence of TET, the TET aptamer is exhausted first due to the formation of aptamer-TET complexes, which prevents assembly of the CTAB–aptamer supramolecule, causing a colour change and no aggregation of AuNP. This mechanism for the detection of TET proved to be sensitive and convenient. The colorimetric assay has a detection limit of 122 nM TET. This sensor has great potential for the sensitive, colorimetric detection of a wide range of molecular analytes.


2009 ◽  
Vol 118 (1) ◽  
pp. 118-124 ◽  
Author(s):  
Shweta Hegde ◽  
Ridhima Chadha ◽  
Satyawati Joshi ◽  
Tulsi Mukherjee ◽  
Sudhir Kapoor

2021 ◽  
Vol 37 (6) ◽  
pp. 1371-1375
Author(s):  
Sujata Milind Kasabe ◽  
Bajirao Bhila Ahire ◽  
Sneha Raj Sharma

Silver is an agent used for different wounds and ulcer treatment as it is nontoxic. However, silver in an ionic or Nanoparticles form is highly toxic to microorganisms. Hence, silver Nanoparticles has wide range of applications than silver ion. Over the physical and chemical methods green synthesis is eco-friendly and cost effective. The present study reveals the formation of silver Nanoparticles by using the fruit extract (Ananas Comosus) by observing the colour change. The produced nanoparticles are characterized by the physicochemical techniques, X-ray diffraction, UV-Visible and antimicrobial activity. The diffraction peaks attributed to 2θ values of 38.11˚ and 44.27˚ (111, 200) reveals the formation of silver nanoparticles. UV-Vis spectrophotometer shows Surface Plasmon resonance (SPR) at 459 nm. The antibacterial studies promise the formation of silver nanoparticle with the ability to inhibit growth of Escherichia coli.


Langmuir ◽  
2017 ◽  
Vol 33 (50) ◽  
pp. 14437-14444 ◽  
Author(s):  
Florian Schulz ◽  
Steffen Tober ◽  
Holger Lange

2007 ◽  
Vol 1061 ◽  
Author(s):  
Subhasish Chatterjee ◽  
Markrete Krikorian ◽  
Harry D. Gafney ◽  
Bonnie Gersten

ABSTRACTBio-conjugated nanomaterials play a promising role in the development of novelsupramolecular structures, molecular machines, and biosensing devices. In this study, lipid-capped gold nanoparticles were synthesized and allowed to form a self-assembled monolayer structure. The nanoparticles were prepared by a phase transfer method, which involved the reduction of potassium tetrachloroaurate(III) by sodium citrate in an aqueous solution and the simultaneous transfer of the reduced species to an organic medium containing DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine). The gold nanoparticles were characterized using Uv-vis spectroscopy and dynamic light scattering (DLS) particle-size analysis. In addition, the resulting nanoparticles were examined using transmission electron microscopy (TEM). The Langmuir-Blodgett (LB) technique was used to assemble the DMPC-capped nanoparticles onto a water subphase at room temperature. The measurement of the compression isotherm confirmed the assemblage of lipid capped gold nanoparticles. This method of synthesis of ordered structures utilizing molecular interactions of lipids will be useful in developing novel metamaterials and nanocircuits.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Claudia Contini ◽  
James W. Hindley ◽  
Thomas J. Macdonald ◽  
Joseph D. Barritt ◽  
Oscar Ces ◽  
...  

Abstract The rapid development of nanotechnology has led to an increase in the number and variety of engineered nanomaterials in the environment. Gold nanoparticles (AuNPs) are an example of a commonly studied nanomaterial whose highly tailorable properties have generated significant interest through a wide range of research fields. In the present work, we characterise the AuNP-lipid membrane interaction by coupling qualitative data with quantitative measurements of the enthalpy change of interaction. We investigate the interactions between citrate-stabilised AuNPs ranging from 5 to 60 nm in diameter and large unilamellar vesicles acting as a model membrane system. Our results reveal the existence of two critical AuNP diameters which determine their fate when in contact with a lipid membrane. The results provide new insights into the size dependent interaction between AuNPs and lipid bilayers which is of direct relevance to nanotoxicology and to the design of NP vectors.


2019 ◽  
Author(s):  
Claudia Contini ◽  
James W. Hindley ◽  
Tom Macdonald ◽  
Joseph Barritt ◽  
Oscar Ces ◽  
...  

<p><b>The rapid development of nanomaterials has led to an increase in the number and variety of engineered nanomaterials (ENMs) in the environment. Gold nanoparticles (AuNPs) are an example of a commonly studied ENM whose highly tailorable properties have generated significant interest through a wide range of research fields. In the present work, we report the first qualitative as well as quantitative experimental characterisation of the AuNP-membrane interaction. We investigate the interactions between citrate-stabilised AuNPs (diameters 5, 10, 25, 35, 50, 60 nm) and large unilamellar vesicles (LUVs) acting as a model membrane system. LUVs were prepared in two different formulations using 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC) and 1,2-dileoyl-sn-glycero-3-phosphocholine (DOPC). Our results show that the interaction between AuNPs and LUVs is size dependent; in particular, we reveal the existence of two AuNP’s critical diameters which determine the fate of AuNPs in contact with a lipid membrane. The results provide a new understanding of the size dependent interaction between AuNPs and lipid bilayers of direct relevance to nanotoxicology and to the design of NP vectors.</b></p>


2020 ◽  
pp. 1192-1198
Author(s):  
M.S. Mohammad ◽  
Tibebe Tesfaye ◽  
Kim Ki-Seong

Ultrasonic thickness gauges are easy to operate and reliable, and can be used to measure a wide range of thicknesses and inspect all engineering materials. Supplementing the simple ultrasonic thickness gauges that present results in either a digital readout or as an A-scan with systems that enable correlating the measured values to their positions on the inspected surface to produce a two-dimensional (2D) thickness representation can extend their benefits and provide a cost-effective alternative to expensive advanced C-scan machines. In previous work, the authors introduced a system for the positioning and mapping of the values measured by the ultrasonic thickness gauges and flaw detectors (Tesfaye et al. 2019). The system is an alternative to the systems that use mechanical scanners, encoders, and sophisticated UT machines. It used a camera to record the probe’s movement and a projected laser grid obtained by a laser pattern generator to locate the probe on the inspected surface. In this paper, a novel system is proposed to be applied to flat surfaces, in addition to overcoming the other limitations posed due to the use of the laser projection. The proposed system uses two video cameras, one to monitor the probe’s movement on the inspected surface and the other to capture the corresponding digital readout of the thickness gauge. The acquired images of the probe’s position and thickness gauge readout are processed to plot the measured data in a 2D color-coded map. The system is meant to be simpler and more effective than the previous development.


Sign in / Sign up

Export Citation Format

Share Document