Effective Management of Rare Lymphangioleiomyomatosis Using Sirolimus: Tablet Matrix with Hibiscus rosa sinensis Leave Mucilage

Author(s):  
Hindustan Abdul Ahad ◽  
Haranath Chinthaginjala ◽  
Abdalrahman Mohammed Salih Karar ◽  
Musab Idris Mohammed Ali Saeed ◽  
Aladin Khalaf Alla Elhaj Eltahir Alawad

The authors aimed to extend the discharge of Sirolimus from the tablets with a blend of herbal and synthetic polymers. In this study, Sirolimus was taken as a model drug, Hydroxy Propyl Methyl Cellulose as a synthetic polymer and mucilage from Hibiscus rosa sinensis leaves as a natural polymer. Sirolimus is an orphan drug used to treat Lymphangioleiomyomatosis damage and to suppress body refuse towards the transplanted organs. Sirolimus matrix tablets made with the blend of Hibiscus rosa sinensis leaves mucilage and Hydroxy Propyl Methyl Cellulose. The blend was assessed for flow possessions and the designed tablets were categorized for official and non-official tests including Sirolimus discharge. The Sirolimus matrix tablets possess good Sirolimus content with passible pre and post-formulation parameters. The study concludes that there were no chemical interactions between Sirolimus with polymers used. The study also revealed that Hibiscus rosa sinensis leaves mucilage can be a good polymer in grouping with other polymers for prolonged drug discharge.

2017 ◽  
Vol 9 (2) ◽  
pp. 1 ◽  
Author(s):  
Ajit Kulkarni ◽  
Trushali Mandhare ◽  
Nagesh Aloorkar

Objective: To explore a novel natural polymer, pullulan for controlling the release of fenoverine from matrix tablets and to elucidate the release kinetics of fenoverine from pullulan and HPMC matrices.Methods: In this study we formulated monolithic matrix tablets containing of fenoverine as controlled-release tablets by direct compression using pullulan, HPMC (Hydroxypropyl methyl cellulose) K4M and HPMC K100M polymers and evaluated for hardness, thickness, friability, weight variation drug content, in vitro drug release characteristics and FTIR (Fourier transform infrared spectroscopy) and DSC (Differential scanning calorimetry) study.Results: All the formulations showed compliance with pharmacopoeial standards. FTIR and DSC study indicated the absence of interaction between fenoverine and excipients. The formulation was optimized on the basis of acceptable tablet properties and in vitro drug release. The results of dissolution studies indicated that the formulation F5 [drug to polymer 1: 0.35] exhibited highest % cumulative drug release of 96.82±0.75 % at the end of 12 h. Optimised batch F5 showed super case II transport mechanism and followed zero order release kinetics. Short-term stability studies of the optimized formulation indicated that there were no significant changes observed in hardness, drug content and in vitro dissolution studies at the end of three months period. Similarity factor f2 was found to be 89, which indicated similar dissolution profiles before and after stability study.Conclusion: Based on above results we conclude that pullulan can be used as a polymer for retarding the release of drug from matrix formulations.Keywords: Pullulan, Fenoverine, Hydroxypropyl methyl cellulose, Controlled release, In vitro


Molecules ◽  
2020 ◽  
Vol 25 (23) ◽  
pp. 5711
Author(s):  
Dorota Wójcik-Pastuszka ◽  
Aleksandra Potempa ◽  
Witold Musiał

Targeted drug delivery systems are a very convenient method of treating inflammatory bowel disease. The properties of pectin make this biopolymer a suitable drug carrier. These properties allow pectin to overcome the diverse environment of the digestive tract and deliver the drug to the large intestine. This investigation proposed bipolymeric formulations consisting of the natural polymer pectin and a synthetic polymer containing the drug 5-aminosalicylic acid. Pectin beads were prepared via ionotropic gelation involving the interaction between the hydrophilic gel and calcium ions. The obtained formulations consisted of natural polymer, 5-aminosalicylic acid (5-ASA) and one of the synthetic polymers, such as polyacrylic acid, polyvinylpyrrolidone, polyethylene glycol or aristoflex. The release of the drug was carried out employing a basket apparatus (USP 1). The acceptor fluid was pH = 7.4 buffer with added enzyme pectinase to reflect the colon environment. The amount of the released drug was determined using UV-Vis spectrophotometry at a wavelength of λ = 330 nm. The kinetics of the drug dissolution revealed that none of the employed models was appropriate to describe the release process. A kinetic analysis of the release profile during two release stages was carried out. The fastest drug release occurred during the first stage from a formulation containing pectin and polyethylene glycol. However, according to the applied kinetic models, the dissolution of 5-ASA was rather high in the formulation without the synthetic polymer during the second stage. Depending on the formulation, 68–77% of 5-ASA was released in an 8-hour time period. The FTIR and DSC results showed that there was no interaction between the drug and the polymers, but interactions between pectin and synthetic polymers were found.


2020 ◽  
Vol 29 (10) ◽  
pp. 572-585
Author(s):  
Clemens Gögele ◽  
Gundula Schulze-Tanzil ◽  
Maria Kokozidou ◽  
Christiane Gäbel ◽  
Moritz Billner ◽  
...  

Objective: Fibroblasts are important for the successful healing of deep wounds. However, the influence exerted by Cuticell, a natural polymer on fibroblasts and by the synthetic polymer, Suprathel, made of poly-L-lactic acid, is not sufficiently characterised. This study compared the survival and growth characteristics of human juvenile and adult dermal fibroblasts as well as murine fibroblast cell line L929, on a natural polymer with those of a synthetic polymer using different culture models. Method: Murine, juvenile and adult human fibroblasts were seeded on both the natural and synthetic polymers using statical slide culture or the medium air interface and dynamical rotatory culture. Cell adherence, viability, morphology and actin cytoskeleton architecture were monitored for 1–7 days. Biomaterial permeability was checked with a previously established diffusion chamber. Results: The majority of the murine and adult human fibroblasts survived in slide and rotatory cultures on both wound dressings. The fibroblasts seeded on the synthetic polymer exhibited phenotypically a typical spread shape with multiple cell adhesion sites earlier than those on the natural polymer. The highest survival rates in all tested fibroblast species over the entire observation time were detected in rotatory culture (mean: >70%). Nevertheless, it led to cell-cluster formation on both materials. In the medium air interface culture, few adult fibroblasts adhered and survived until the seventh day of culture on both the natural and synthetic polymers, and no viable juvenile and L929 fibroblasts could be found by day seven. Apart from a significant higher survival rate of L929 in slide culture on the natural polymer compared with the synthetic polymer at the end of the culturing period (p<0.0001), and a higher cell survival of L929 on the natural polymer in medium air interface culture, only minor differences between both materials were evident. This suggested a comparable cytocompatibility of both materials. Permeability testing revealed slightly higher permeance of the natural polymer compared with the synthetic polymer. Conclusion: Cell survival rates depended on the culture system and the fibroblast source. Nevertheless, the juvenile skin fibroblasts were the most sensitive. This observation suggests that wound dressings used in treating children should be tested beforehand with juvenile fibroblasts to ensure the dressing does not compromise wound healing. Future experiments should also include the response of compromised fibroblasts, for example, from burn patients.


Author(s):  
Surender Verma ◽  
S. Singh ◽  
D. Mishra ◽  
Atul Gupta ◽  
Rakesh Sharma

The objective of present study was to develop colon targeted drug delivery using bacterially triggered approach through oral route. Valdecoxib (COX-2 inhibitor) was chosen as a model drug in order to target it to colon which may prove useful in inflammatory bowel disease and related disorders. Matrix tablets of Valdecoxib were prepared by wet granulation technique utilizing different ratio of Guar gum and Sodium starch glycholate. The prepared matrix tablets were evaluated for uniformity of weight, uniformity of content, hardness and in vitro dissolution study in simulated gastric and intestinal fluid (Phosphate Buffer pH-1.2, pH-6.8 and pH-7.4), followed by Dissolution study in bio-relevant dissolution media Phosphate Buffer (pH-6.8) containing rat caecal content. The results revealed that the formulated batch had released lesser quantity of drug at pH 1.2 and pH 7.4 in 2 hors whereas in biorelevent dissolution media containing rat caecal content it released significantly higher amount of drug which was also significantly higher than the dissolution media of same pH without caecal content (microflora) and it was concluded that guar gum can be used as a potential carrier for targeting drugs to colon.


Nanomaterials ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 21
Author(s):  
Mina Keshvardoostchokami ◽  
Sara Seidelin Majidi ◽  
Peipei Huo ◽  
Rajan Ramachandran ◽  
Menglin Chen ◽  
...  

Many types of polymer nanofibers have been introduced as artificial extracellular matrices. Their controllable properties, such as wettability, surface charge, transparency, elasticity, porosity and surface to volume proportion, have attracted much attention. Moreover, functionalizing polymers with other bioactive components could enable the engineering of microenvironments to host cells for regenerative medical applications. In the current brief review, we focus on the most recently cited electrospun nanofibrous polymeric scaffolds and divide them into five main categories: natural polymer-natural polymer composite, natural polymer-synthetic polymer composite, synthetic polymer-synthetic polymer composite, crosslinked polymers and reinforced polymers with inorganic materials. Then, we focus on their physiochemical, biological and mechanical features and discussed the capability and efficiency of the nanofibrous scaffolds to function as the extracellular matrix to support cellular function.


Author(s):  
K. Pallavi ◽  
T. Pallavi

Objective: The main aim of the present research was to develop an oral fast dissolving polymeric film (FDF) with good mechanical properties, faster disintegration and dissolution when placed on the tongue.Methods: Eletriptan hydrobromide is prescribed for the treatment of mild to a moderate migraine. The polymers selected for preparing films were Pullulan, Maltodextrin (MDX), Acacia, Sodium alginate (SA), Locust bean gum (LBG), Guar gum (GG), Xanthan gum (XG), Polyvinyl alcohol (PVA), Polyvinyl pyrrolidine (PVP), Hydroxyl propyl methyl cellulose (HPMC) E5, and HPMC E15. Twelve sets of films FN1–FN12 were prepared by solvent casting method with Pullulan and combination of Acacia, MDX, SA, LBG, GG, XG, PVA, PVP, HPMC E5 and HPMC E15. Five sets of films FS1–FS5 were prepared using synthetic polymers like PVA, PVP, HPMC E5 and HPMC E15.Results: From all the prepared polymer formulations, FN2, FN8, and FS3 were selected based on disintegration time, and drug release and amongst this three FN2 was optimised based on its disintegration time (D. T). The percent drug release of the optimised film was compared with the percent release of the pure drug.Conclusion: The optimised formulation had a D. T of 16 s and a percent drug release of 97.5% in 10 min in pH 6.8 phosphate buffer and 100.6% drug release in 10 min in 0.1N HCl.


Soil Research ◽  
1995 ◽  
Vol 33 (5) ◽  
pp. 805 ◽  
Author(s):  
SM Bernas ◽  
JM Oades ◽  
GJ Churchman

Latex (natural polymer) and poly-DADMAC (synthetic polymer) were applied to a red brown earth (Alfisol) and a Wiesenboden (Mollisol). Run-off, infiltration, sediment loss and water stable aggregates were measured after subjecting the soils to simulated rainfall. Water retention of latex and poly-DADMAC amended soils was determined. The MED test for hydrophobicity was also carried out for the latex-treated soil. Latex decreased run-off and erosion, and increased infiltration on both soils. Poly-DADMAC minimized run-off and erosion, and increased infiltration on the Wiesenboden. It increased run-off and decreased infiltration on the red-brown earth; however, it still decreased erosion. Latex increased the percentage of water-stable aggregates > 2 mm on the red-brown earth, but it had less effect on the Wiesenboden. Poly-DADMAC decreased the percentage of water-stable aggregates < 0.125 mm on both soils after simulated rainfall. Both latex and poly-DADMAC had little effect on water retention of the red-brown earth and the Wiesenboden. Application of 1.5 g kg-1 of latex increased MED values of both soils, to give values that indicate moderate water-repellence but should not affect plant growth. Generally, latex was more effective on the red-brown earth and poly-DADMAC was more effective on the Wiesenboden. It seems that latex can be effective on all soil types, but poly-DADMAC will have more effect on clay soils.


Author(s):  
Uday Kumar Thummala ◽  
Eswar Guptha Maddi ◽  
Prameela Rani Avula

The fixed dose combination of ledipasvir (LDV) and sofosbuvir (SBV) is approved by USFDA in 2014 for the treatment of Hepatitis C virus infection and is available in the form of tablets. In the present work, the principal aim is to explore orodispersible films type dosage form to impart its characteristic advantages to these poorly soluble drugs so as to improve their bioavailability and ease of administration. Solid dispersions with low viscosity grade methyl cellulose A 15-LV (MC A 15-LV) at different ratios with LDV and SBV were prepared and evaluated to check their ability in improving the solubility of the drugs. The best drug to polymer ratio was selected to develop the films, using other excipients including plasticizer and superdisintegrant. Solvent casting method was used to develop the films. Three formulation parameters were selected as independent factors viz. thickness of the film (50-150 µm), concentration of superdisintegrant (sodium starch glycolate 6-10%) and concentration of plasticizer (polyethylene glycol 400, 10-20%). Disintegration time (DT), time for 90% dissolution (T90%) of LDV and time for 90% dissolution of SBV were taken as the response variables. The experiment was designed using Box-Behnken design. Among the polymers, MC A 15-LV produced maximum solubility at 1:2 ratio. The films obtained were found to have good tensile strength and % elongation with disintegration times in the range of 43-162 sec. The T90% values for LDV and SDV were found to be in the range of 8.4-21.2 min and 7.2-18.4 respectively. All the three formulation factors were found to have significant effect on the three responses. The optimum formulation was identified at 100 µm thickness, 10% superdisintegrant and 20% plasticizer which showed DT of 89 sec with T90% values of 8.4 min and 7.2 min for LDV and SBV respectively. The rapid disintegration and dissolution of the films signified that the set objective was achieved.


INDIAN DRUGS ◽  
2018 ◽  
Vol 55 (02) ◽  
pp. 68-71
Author(s):  
N. C Ratnakara ◽  
◽  
M. C. Gohel

The objective of the present study was to identify critical formulation parameters affecting the drug release from modified release wax matrix tablet of milnacipran hydrochloride employing the concept of design of experiments.The optimized amount of Compritol 888 ATO(intragranular) (X1), lactose (X2) and Compritol 888ATO (extragranular)(X3) were determined employing simplex latticedesign. The tablets were prepared using melt granulation technique. The in vitro drug release study was carried out in an acidic medium (pH 1.2) for 2 h and thereafter the dissolution study was conducted in phosphate buffer (pH 6.8).The selected dependent variables were the cumulative percentage of milnacipran hydrochloride dissolved at 1 (Y1), 8 (Y8), 16 (Y16) and 24 h (Y24). Mathematical models, correlating the independent variables with dependent variables were evolved. Optimization was performed for the three independent variables using the stated target ranges; Y1≤20%; Y8=45±5%; Y16=72±5%; Y24=100%. The optimized amounts of Compritol ATO888 (intragranular)(X1), lactose (X2) and Compritol 888ATO (extragranular)(X3), were found to be 60, 55 and 30 mg, respectively.The optimized formulation showed a release profile that was close to the predicted values. The drug was released by anomalous diffusion from the optimized formulation. Compritol 888ATO (intragranular) (X1), lactose (X2) and Compritol 888ATO(extragranular) (X3) were identified as critical variables.


Sign in / Sign up

Export Citation Format

Share Document