A Smart and Potential approach for Transdermal Drug Delivery using Microneedles: A Review

2021 ◽  
Vol 11 (2) ◽  
pp. 113-120
Author(s):  
Neha Sharma ◽  
Tarun Kumar Sharma ◽  
Vinay Pandit ◽  
M. S Ashawat

Transdermal drug delivery system used to transport the drug across the skin deep into systemic circulation. The main advantages of Transdermal drug delivery system improved patient compliance, sustained release, avoidance of gastric irritation, as well as elimination of pre-systemic first-pass effect. But most of therapeutic agents is limited due to thickness of stratum corneum, which act as a barrier for the delivery of various drug molecules and only few molecules are able to reach the action site. Microneedles are the new form of delivery system, which are used to increase the delivery of drug through this route and overcoming the number of problems related to conventional drug delivery system the main aim of this review to focus on new innovation in transdermal drug delivery systems. In the microneedle drug delivery system, the skin is temporarily broken, that creating micron size pathways that deliver the sufficient amount of drug directly into the stratum corneum from which the drug can directly go into the systemic circulation. In this review, we describe different type of microneedles can be solid, coated, dissolving and biodegradable microneedles and their method of fabrication. Microneedles can be manufactured in different forms like hollow, solid, and dissolving. Also describe materials used for fabrication, fabrication techniques, methodology of drug delivery such as Poke and patch, Coat and poke, Poke and release, Poke and flow and evaluation parameters.

2020 ◽  
Vol 2 (3) ◽  
Author(s):  
Luthfia Azzahra ◽  
Soraya Ratnawulan Mita ◽  
Sriwidodo Sriwidodo

Herbal compounds have different physicochemical properties. Its use on the oral route often has low biological availability. Therefore, alternative transdermal routes are used through the skin. The stratum corneum skin layer is the most difficult layer to penetrate. Therefore it is necessary to use a drug delivery system such as ethosome, transfersome or transethosome to increase transdermal drug delivery. This review article aims to look at the potential of ethosome, transfersome, and transethosome in increasing their ability to deliver herbal drugs in terms of their formulation and characterization. Literature searches were performed using online search engines namely NCBI and Google Scholar with the keywords ‘Transdermal Drug Delivery System’, 'Ethosome', 'Transfersome', and 'Transethosome'. The result showed compositions of ethosomes are phospholipids, water, and ethanol. The composition of transfersome is phospholipid, water, and edge activator. Transethosomes are a combination of phospholipids, water, ethanol, and edge activators. The role of ethanol and edge activator is thought to increase skin permeation. Transdermal drug delivery systems can be used on herbal drugs to increase transdermal drug delivery.Keywords: Transdermal, Ethosome, Transfersome, Transethosome, Herbal.


2015 ◽  
Vol 1 (6) ◽  
pp. 244 ◽  
Author(s):  
Audumbar Digambar Mali ◽  
Ritesh Bathe ◽  
Manojkumar Patil

Transdermal drug delivery systems (TDDS), also known as patches, are dosage forms designed to deliver a therapeutically effective amount of drug across a patients skin. In order to deliver therapeutic agents through the human skin for systemic effects, the comprehensive morphological, biophysical and physicochemical properties of the skin are to be considered. Transdermal delivery provides a leading edge over injectables and oral routes by increasing patient compliance and avoiding first pass metabolism respectively. Transdermal delivery not only provides controlled, constant administration of the drug, but also allows continuous input of drugs with short biological half-lives and eliminates pulsed entry into systemic circulation, which often causes undesirable side effects. The TDDS review articles provide valuable information regarding the transdermal drug delivery systems and its evaluation process details as a ready reference for the research scientist who is involved in TDDS. With the advancement in technology Pharma industries have trendified all its resources. Earlier we use convectional dosage form but now we use novel drug delivery system. One of greatest innovation of novel drug delivery is transdermal patch. The advantage of transdermal drug delivery system is that it is painless technique of administration of drugs.


Author(s):  
Reshmi Jayaprakash ◽  
Jahnara Hameed ◽  
Anupriya Anupriya

Recently, most widely using conventional dosage form such as tablet, capsules, and injections but due to some case we are preferable to choose transdermal drug delivery system (TDDS) because conventional oral dosage form undergo first pass metabolism. In TDDS, skin is the effective medium for the penetration of drug into systemic circulation. This system required very low dose for the effective result or action. One of the major disadvantages of TDDS is penetration rate is very low through the stratum corneum. Nowadays, different types of skin penetration enhancement techniques are used for increasing the penetration. These types of techniques can be also increase the bioavailability. The patients have more preferable to choose this type of drug delivery system because it has more advantages than conventional dosage form. This article is discuses about the anatomy and physiology of skin and its drug penetration capacity, polymers used in transdermal drug delivery and different types of TDDS.


Author(s):  
Syeda Ayesha Fathima ◽  
Shireen Begum ◽  
Syeda Saniya Fatima

Conventional dosage forms which require multidose therapy have many problems and complications. Design of a conventional dosage forms should be such that it delivers right amount of drug in right manner to the target site. The encouragement in development of novel drug delivery system is apart from therapeutic efficacy is its cause. Redesigning the unit and means is a difficult task and profitable task so a controlled released drug delivery system, a novel drug delivery system evolves which facilitates the release of drug at predetermined rate. Controlled drug delivery can be achieved by transdermal drug delivery system which can deliver the drug through skin to the systemic circulation at a predetermine rate over a prolonged period of time.


Author(s):  
Joshi Hrushikesh Anantrao ◽  
Pandye Aaditya Nath ◽  
Patil Rajendra Nivrutti

Transdermal Drug Delivery System (TDDS) is described as a self-contained or discrete dosage form that is applied to the intact skin. This rout of drug administration of drugs through the skin for therapeutic use is an alternative approach to oral, intravascular, subcutaneous, and transmucosal routes. The delivery of drugs through the skin to the systemic circulation provides a convenient route of administration for a variety of clinical indications. Transdermal Drug Delivery System allows continuous drug administration, use of drugs with short biological half lives, avoids increases hepatic first pass elimination and rapid termination of medication by removing the transdermal drug delivery system from the skin.  Various transdermal technologies may be applied for different categories of pharmaceuticals used for the treatment of disorders of the skin or for systemic effects to treat diseases of other organs. Several transdermal products and applications include hormone replacement therapy, contraception, pain management, angina pectoris, smoking cessation, and neurological disorders such as Parkinson's disease. The most commonly used transdermal system is the skin patch using various types of technologies. Stratum corneum is the outermost layer of the skin and it is the main barrier layer for permeation of drug in transdermal delivery of drugs. So, to circumvent the barrier properties of stratum corneum and to increase the flux of drug through skin membrane various penetration enhancement techniques are used in transdermal drug delivery system. The review presents different physical and chemical methods in penetration enhancement approaches and to optimize the transdermal delivery system.


2018 ◽  
Vol 8 (5-s) ◽  
pp. 62-66 ◽  
Author(s):  
Anupriya Kapoor ◽  
Shashi Kiran Mishra ◽  
Dharmesh Kumar Verma ◽  
Prashant Pandey

In present scenario more than 70% of the drugs that are taken by oral route are found to be less effective as desired, to overcome this constraint Transdermal drug delivery system has emerged as an innovative area of research, this system helps in delivering the drugs and macromolecules through skin into systemic circulation. At present, the worldwide market of Transdermal patch has reached 2 billion pounds. Many drugs like Estrogen, Progestrone, Nitroglycerine, Clonodine etc. are fabricated in form of Transdermal patches due to its ability to deliver the drug in non-invasive manner and also to overcome the problems associated with oral route. Although the Transdermal patches deliver the drug at predetermined rate1, the partitioning of drug from the system to the skin and then penetration through different layers of skin can be altered by adding penetration enhancers that can be physical or chemical in nature. This article deals with the role of different chemicals that can be used as penetration enhancer. Keywords: Penetration enhancer, Layer of skin, Fatty alcohol and glycol


Author(s):  
Asif Eqbal ◽  
Vaseem Ahamad Ansari ◽  
Abdul Hafeez ◽  
Farogh Ahsan ◽  
Mohd Imran ◽  
...  

Nanoemulsions are drug transporters for the delivery of therapeutic agents. They possess the small droplet size having the range of 20×10-9-200×10-9m. The main purpose of using Nanoemulsion is to enhance the drug bio- availability of transdermal drug delivery system. With the help of phase diagram, we can select the components of nanoemulsion depending upon formulas ratio of oil phase, surfactant/co-surfactant and water phase. Nanoemulsion directly used as a topical drug delivery in skin organs. The most useable pharmaceutical application has been developed till date to provide systemic effects to penetrating the full thickness of skin organ layer nanoemulsions can be administered through variety of routes such as percutaneous, perioral, topical, transdermal, ocular and parental administration of medicaments. Nanoemulsions are transparent and slightly opalescent. Nanoemulsion can be prepared through various methods. Nanoemulsions are transparent and slightly opalescent. Factor affecting nanoemulsions are surfactant, viscosity, lipophilic, drug content, pH, concentration of each component, and methodology of formulation. It is unfeasible to test all factors at the various levels. Design of formulation when it comes to experimental design it gives an excellent approach through reducing the time and money.


Sign in / Sign up

Export Citation Format

Share Document