Pharmacosomes as Drug Delivery System: An Overview

Author(s):  
Nikita D. Gidde ◽  
Indrayani D. Raut ◽  
Manojkumar M. Nitalikar ◽  
Shrinivas K. Mohite ◽  
Chandrakant S. Magdum

Pharmacosomes are the colloidal dispersions of drugs covalently bound to lipids and can exist, depending on the chemical structure, as ultrafine vesicular, micellar, or hexagonal aggregates. Because of the linking of a drug (pharmakon) to a carrier (soma), they are rightly termed "pharmacosomes."Pharmacosomes can be characterized as a neutral molecule with both positive and negative charges, water-loving and fat-loving characteristics, and in complex form, an ideal polyphenol-to-phospholipid ratio. Pharmacosomes are amphiphilic lipid vesicular systems that have demonstrated their ability to increase the bio-accessibility of poorly water-soluble and poorly lipophilic medicines. Drug pharmacosomes provide an effective method of delivering the drug directly to the infection site, which contributes to a lowering in drug toxicity without harmful effects, and also lowers the cost of therapy by improving the drug's bioavailability, particularly in the case of poorly soluble drugs. Pharmacosomes are appropriate to incorporate both hydrophilic and lipophilic drugs. Pharmacosomes have been designed for multiple anti-inflammatory medications that are non-steroidal, neurological, and antineoplasty.

2018 ◽  
Vol 8 (5) ◽  
pp. 118-129 ◽  
Author(s):  
Jaspreet Kaur Saini ◽  
Sandeep Kumar

With the advancement in modern pharmaceutical technologies, Nanotechnology is the one of the most establish technology which is used to improve the therapeutic index and to overcome the formulation challenges of poorly water-soluble compounds. Nanocrystals, in nano range, is the interesting approach for poorly soluble drugs. Due to the small size, increased surface area enhanced the dissolution rate and solubility of drug. In this paper, current technologies and methods in nanocrystal preparation, stabilization, pharmaceutical applications and limitations of nanocrystal are reviewed. Keywords: Nanocrystal, limitations, stabilization, preparation, applications


2017 ◽  
Vol 5 (04) ◽  
pp. 17-23
Author(s):  
Katta Manogna ◽  
P. Nagaveni ◽  
K. Thyagaraju

Most of the newly invented chemical drug moieties are poorly water soluble. According to BCS classification, class II and IV drugs are considered as poorly water soluble. So enhancement of oral absorption and bioavailability of solid dosage forms remains a challenge to formulation scientists due to their solubility criteria. Therefore many techniques are being explored to enhance the solubility of poor soluble drugs. Solid dispersion is one of the most important method for enhance the solubility (dissolution rate) and hence oral bioavailability of poorly soluble drugs. In solid dispersion the particle size of drug is reduced or a crystalline pure drug is converted into amorphous form and hence the solubility is increased. Polymer incorporating in solid dispersion technology is usually hydrophilic in nature and also showing compatibility with the drug to enhance the drug solubility. This review mainly discus about solid dispersion, preparation methods, and finally characterization.


2020 ◽  
Vol 10 (1) ◽  
pp. 173-177 ◽  
Author(s):  
, Ikram ◽  
Kapil Kumar

Solid dispersion is a technique which is widely and successfully applied to improve the solubility, dissolution rates and consequently the bioavailability of poorly soluble drugs. Dispersion of one or more active ingredients (hydrophobic) is done with an inert carrier (hydrophilic) at solid-state prepared by fusion method, solvent, and melting solvent method. In this review article, we have focused on the methods of preparation, advantages, disadvantages and characterization of the solid dispersions. Keywords: Solid dispersion; dissolution; solubility.


2013 ◽  
Vol 49 (3) ◽  
pp. 571-578 ◽  
Author(s):  
Payal Hasmukhlal Patil ◽  
Veena Sailendra Belgamwar ◽  
Pratibha Ramratan Patil ◽  
Sanjay Javerilal Surana

The objective of the present work was to enhance the solubility and dissolution rate of the drug raloxifene HCl (RLX), which is poorly soluble in water. The solubility of RLX was observed to increase with increasing concentration of hydroxypropyl methylcellulose (HPMC E5 LV). The optimized ratio for preparing a solid dispersion (SD) of RLX with HPMC E5 LV using the microwave-induced fusion method was 1:5 w/w. Microwave energy was used to prepare SDs. HPMC E5 LV was used as a hydrophilic carrier to enhance the solubility and dissolution rate of RLX. After microwave treatment, the drug and hydrophilic polymer are fused together, and the drug is converted from the crystalline form into an amorphous form. This was confirmed through scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and powder X-ray diffraction (PXRD) studies. These results suggested that the microwave method is a simple and efficient method of preparing SDs. The solubility and dissolution rate of the SDs were increased significantly compared with pure RLX due to the surfactant and wetting properties of HPMC E5 LV and the formation of molecular dispersions of the drug in HPMC E5 LV. It was concluded that the solubility and dissolution rate of RLX are increased significantly when an SD of the drug is prepared using the microwave-induced fusion method.


Author(s):  
HUSSEIN K. ALKUFI ◽  
ASMAA M. RASHID

Objective: The aims of the study to enhance solubility and dissolution of famotidine using natural polymer. Solubility study of a drug is one of the contributing factors of its oral bioavailability. The formulation of poorly soluble drugs for oral delivery presents a challenge to the formulation technologists. Methods: The present study has shown that it is possible to raise the solubility for poorly soluble drugs like famotidine, by preparing solid dispersion using natural water-soluble polymer (xyloglucan and hyaluronic acid) as solubilizer through solvent evaporation method. Physical mixture and solid dispersion of famotidine with xyloglucan (XG) or hyaluronic acid in a ratio of 1:1, 1:2, 1:3 were prepared. Solubility study, drug content, dissolution profile and compatibility study were performed for famotidine in solid dispersions XS1, XS2, XS3, HS4, HS5, HS6 as well as in physical mixtures at a ratio 1:1 for both polymer (XG and hyaluronic acid). Results: It was observed that solid dispersions of each drugs showed an increase in dissolution rate in comparison with its pure drug in the ratio of 1:1 (Drug: carrier). It can be concluded that with the care and proper use of xyloglucan, the solubility of drugs poorly soluble can be improved. The prepared solid dispersion showed improvement of drug solubility in all prepared formulas. The best result was obtained with formula XS1 (famotidine: xyloglucan at ratio 1:1) that showed 26 fold increase in solubility compared to the solubility of pure drug. Conclusion: The natural solid dispersion, increased wettability and reduced crystallinity of the drug which leads to improving solubility and dissolution.


2018 ◽  
Vol 8 (6-s) ◽  
pp. 5-8 ◽  
Author(s):  
Rinshi Agrawal ◽  
RK Maheshwari

Application of mixed solvency has been employed in the present research work to develop a liquisolid system (Powder formulation) of poorly water soluble drug, cefixime (as model drug). Material and Methods: For poorly water soluble drug cefixime, combination of solubilizers such as sodium acetate, sodium caprylate and propylene glycol as mixed solvent systems were used to decrease the overall concentration of solubilizers required to produce substantial increase in solubility and thereby resulting in enhanced drug loading capacity of cefixime. The procured sample of cefixime was characterized by melting point, IR, UV and DSC studies. Stability studies of liquisolid system of cefixime were performed for two months at room temperature, 30˚C and 40˚C. All the formulations were physically, chemically, and microbiologically stable. Conclusion: Mixed solvency concept has been successfully employed for enhancing the drug loading of poorly water soluble drug, cefixime. Keywords: Solubility, cefixime, liquisolid system, mixed solvency concept.


2019 ◽  
Vol 9 (2) ◽  
pp. 574-582
Author(s):  
Stanekzai Azimullah ◽  
, Vikrant ◽  
CK Sudhakar ◽  
Pankaj Kumar ◽  
Akshay Patil ◽  
...  

Solubility is a vital factor for devloping drug delivery systems for poorly water soluble drugs. Several conventional approaches for enhancement of solubility have limited applicability, especially when the drugs are poorly water soluble. Nanosuspension technology can be used to enhance the solubilty, stability as well as the bioavailability of poorly water soluble drugs. Nanosuspensions are biphasic systems comperising of pure drug particles dispersed in an aqueous vehicle, stabilized by surfac active agents. Fabrication of nanosuspension is simple and more advantageous than other approaches. Techniques like high-pressure homogenization, wet milling, emulsification, solvent evaporation, bottom up technology and top down technology have been applicable in the fabrication of nanosuspensions. Nanosuspension delivery is possible by several routes, such as oral, pulmonary, parenteral and ocular routes. Nanosuspension not only solves solubility and bioavailability issue, but improve drug safety and efficacy. In this context, we reviewed the current techniques used to develop nanosuspensions and their recents studies application in drug delivery system. Keywords : Solubility, fabrication, Characterization, Applications, Nanosuspension.


Author(s):  
Devika Tripathi ◽  
Nandini Chaudhary ◽  
Dinesh Kumar Sharma ◽  
Jagannath Sahoo

Ketoprofen used as a Non-steroidal anti-inflammatory drug selected as a poorly water-soluble model drug. Due to the poorly soluble nature of Ketoprofen liberate reduced bioavailability. Hydrotropic solubilization technique is a promising technique used to improve the solubility of water-insoluble drugs. In this investigation, 2M sodium salicylate has been employed in the titrimetric estimation of Ketoprofen and shows synergistic enhancement in the solubility of Ketoprofen by many folds as compared to the distilled water. It excluded the use of various organic solvent like ethanol; methanol and chloroform widely utilized in the titrimetric estimation of various poorly soluble drugs but due to the higher cost, volatility, toxicities lead to environmental pollution hence are the cons of it. The proposed method is new, simple, precise, and inexpensive. The results of the analysis have been validated statistically. The mean % recoveries were found to be close to 100, indicating the accuracy of the proposed method. Low values of standard deviation, % coefficient of variation, and standard error further proved the reproducibility and precision of the proposed method.


2020 ◽  
Vol 42 (4) ◽  
pp. 262-268
Author(s):  
L. Kobrina ◽  
◽  
S. Sinelnikov ◽  
V. Shtompel ◽  
D. Bandurina ◽  
...  

Recently, many technological methods of enhancing the solubility and dissolution characteristics of poorly water soluble drugs have been reported in the literature. Сyclodextrins are able to form water-soluble non-covalent inclusion complexes with many poorly soluble lipophilic drugs. The purpose of this study is to evaluate the possibility of interaction of the antifungal drug Bifonazole (BFZ) through complexation with carboxymethylated-β-cyclodextrin (КМ-β-CD). Based on the data obtained, we can conclude that the presence of KM-β-CD improves solubilization of BFZ more than 50 times. Кеуwords: cyclodextrins, solubility, poorly-water soluble drugs, bifonazole.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 465 ◽  
Author(s):  
Griffin Pauli ◽  
Wei-Lun Tang ◽  
Shyh-Dar Li

A large proportion of pharmaceutical compounds exhibit poor water solubility, impacting their delivery. These compounds can be passively encapsulated in the lipid bilayer of liposomes to improve their water solubility, but the loading capacity and stability are poor, leading to burst drug leakage. The solvent-assisted active loading technology (SALT) was developed to promote active loading of poorly soluble drugs in the liposomal core to improve the encapsulation efficiency and formulation stability. By adding a small volume (~5 vol%) of a water miscible solvent to the liposomal loading mixture, we achieved complete, rapid loading of a range of poorly soluble compounds and attained a high drug-to-lipid ratio with stable drug retention. This led to improvements in the circulation half-life, tolerability, and efficacy profiles. In this mini-review, we summarize our results from three studies demonstrating that SALT is a robust and versatile platform to improve active loading of poorly water-soluble compounds. We have validated SALT as a tool for improving drug solubility, liposomal loading efficiency and retention, stability, palatability, and pharmacokinetics (PK), while retaining the ability of the compounds to exert pharmacological effects.


Sign in / Sign up

Export Citation Format

Share Document